Shadows of quantum machine learning

计算机科学 量子机器学习 软件部署 量子 量子计算机 人工智能 班级(哲学) 机器学习 物理 软件工程 量子力学
作者
Sofiène Jerbi,Casper Gyurik,Simon C. Marshall,Riccardo Molteni,Vedran Dunjko
出处
期刊:Nature Communications [Nature Portfolio]
卷期号:15 (1) 被引量:10
标识
DOI:10.1038/s41467-024-49877-8
摘要

Abstract Quantum machine learning is often highlighted as one of the most promising practical applications for which quantum computers could provide a computational advantage. However, a major obstacle to the widespread use of quantum machine learning models in practice is that these models, even once trained, still require access to a quantum computer in order to be evaluated on new data. To solve this issue, we introduce a class of quantum models where quantum resources are only required during training, while the deployment of the trained model is classical. Specifically, the training phase of our models ends with the generation of a ‘shadow model’ from which the classical deployment becomes possible. We prove that: (i) this class of models is universal for classically-deployed quantum machine learning; (ii) it does have restricted learning capacities compared to ‘fully quantum’ models, but nonetheless (iii) it achieves a provable learning advantage over fully classical learners, contingent on widely believed assumptions in complexity theory. These results provide compelling evidence that quantum machine learning can confer learning advantages across a substantially broader range of scenarios, where quantum computers are exclusively employed during the training phase. By enabling classical deployment, our approach facilitates the implementation of quantum machine learning models in various practical contexts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tiantian完成签到,获得积分10
刚刚
子非鱼完成签到 ,获得积分10
2秒前
你怎么睡得着觉完成签到 ,获得积分10
4秒前
aaa发布了新的文献求助20
9秒前
科研通AI5应助内向的宛丝采纳,获得10
10秒前
科研通AI2S应助雪宝宝采纳,获得10
13秒前
可爱的函函应助asymmetric糖采纳,获得30
14秒前
长情天抒发布了新的文献求助10
14秒前
BCKT完成签到,获得积分10
15秒前
文明8完成签到 ,获得积分10
15秒前
123456完成签到 ,获得积分10
17秒前
aaa完成签到,获得积分10
18秒前
可罗雀完成签到,获得积分10
19秒前
大个应助科研通管家采纳,获得30
19秒前
Owen应助科研通管家采纳,获得10
19秒前
香蕉觅云应助科研通管家采纳,获得200
19秒前
Akim应助科研通管家采纳,获得10
19秒前
pluto应助科研通管家采纳,获得20
20秒前
NexusExplorer应助科研通管家采纳,获得10
20秒前
CipherSage应助科研通管家采纳,获得10
20秒前
领导范儿应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
20秒前
back you up应助科研通管家采纳,获得50
20秒前
大模型应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
阿飘应助科研通管家采纳,获得10
20秒前
pagoda发布了新的文献求助20
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
23秒前
冷酷洋葱完成签到,获得积分10
24秒前
25秒前
YG完成签到,获得积分10
25秒前
alai发布了新的文献求助10
26秒前
天天快乐应助CGW采纳,获得10
27秒前
28秒前
ct551144发布了新的文献求助10
29秒前
周小笛完成签到 ,获得积分10
30秒前
丘比特应助CGW采纳,获得10
31秒前
moon发布了新的文献求助10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777918
求助须知:如何正确求助?哪些是违规求助? 3323510
关于积分的说明 10214551
捐赠科研通 3038674
什么是DOI,文献DOI怎么找? 1667606
邀请新用户注册赠送积分活动 798207
科研通“疑难数据库(出版商)”最低求助积分说明 758315