The Bayesian Time Machine: Accounting for temporal drift in multi-arm platform trials

贝叶斯概率 频数推理 平滑的 计算机科学 背景(考古学) 人口 可信区间 统计 贝叶斯推理 人工智能 医学 数学 生物 环境卫生 古生物学
作者
Benjamin R. Saville,Donald A. Berry,Nicholas Berry,Kert Viele,Scott Berry
出处
期刊:Clinical Trials [SAGE Publishing]
卷期号:19 (5): 490-501 被引量:32
标识
DOI:10.1177/17407745221112013
摘要

Multi-arm platform trials investigate multiple agents simultaneously, typically with staggered entry and exit of experimental treatment arms versus a shared control arm. In such settings, there is considerable debate whether to limit analyses for a treatment arm to concurrent randomized control subjects or to allow comparisons to both concurrent and non-concurrent (pooled) control subjects. The potential bias from temporal drift over time is at the core of this debate.We propose time-adjusted analyses, including a "Bayesian Time Machine," to model potential temporal drift in the entire study population, such that primary analyses can incorporate all randomized control subjects from the platform trial. We conduct a simulation study to assess performance relative to utilizing concurrent or pooled controls.In multi-arm platform trials with staggered entry, analyses adjusting for temporal drift (either Bayesian or frequentist) have superior estimation of treatment effects and favorable testing properties compared to analyses using either concurrent or pooled controls. The Bayesian Time Machine generally provides estimates with greater precision and smaller mean square error than alternative approaches, at the risk of small bias and small Type I error inflation.The Bayesian Time Machine provides a compromise between bias and precision by smoothing estimates across time and leveraging all available data for the estimation of treatment effects. Prior distributions controlling the behavior of dynamic smoothing across time must be pre-specified and carefully calibrated to the unique context of each trial, appropriately accounting for the population, disease, and endpoints.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田旭发布了新的文献求助10
1秒前
刘燕完成签到,获得积分20
2秒前
甘地发布了新的文献求助10
2秒前
JamesPei应助zed采纳,获得10
4秒前
4秒前
你键盘哥发布了新的文献求助10
4秒前
MANBA完成签到 ,获得积分10
4秒前
黑葫芦发布了新的文献求助10
7秒前
大头完成签到,获得积分10
7秒前
万能图书馆应助宋温暖采纳,获得10
8秒前
彪壮的茗发布了新的文献求助30
9秒前
9秒前
11秒前
orixero应助Jolin采纳,获得10
11秒前
11秒前
11秒前
Eliauk完成签到 ,获得积分10
12秒前
12秒前
你键盘哥完成签到,获得积分10
12秒前
13秒前
Akim应助雨田采纳,获得10
13秒前
豆豆发布了新的文献求助30
14秒前
如约而至发布了新的文献求助10
14秒前
yiyiluo发布了新的文献求助10
15秒前
小二郎应助唐笑采纳,获得10
16秒前
17秒前
17秒前
17秒前
熊宇完成签到,获得积分10
18秒前
Owen应助mmnn采纳,获得10
20秒前
22秒前
22秒前
23秒前
25秒前
27秒前
28秒前
28秒前
yang发布了新的文献求助10
28秒前
科研通AI5应助Angel采纳,获得10
28秒前
可靠世平发布了新的文献求助10
29秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807102
求助须知:如何正确求助?哪些是违规求助? 3351867
关于积分的说明 10356328
捐赠科研通 3067877
什么是DOI,文献DOI怎么找? 1684778
邀请新用户注册赠送积分活动 809910
科研通“疑难数据库(出版商)”最低求助积分说明 765767