Transfer-Learning-Based State-of-Health Estimation for Lithium-Ion Battery With Cycle Synchronization

计算机科学 水准点(测量) 电池(电) 动态时间归整 健康状况 学习迁移 人工智能 功率(物理) 大地测量学 量子力学 物理 地理
作者
Kate Qi Zhou,Yan Qin,Chau Yuen
出处
期刊:IEEE-ASME Transactions on Mechatronics [Institute of Electrical and Electronics Engineers]
卷期号:28 (2): 692-702 被引量:23
标识
DOI:10.1109/tmech.2022.3201010
摘要

Accurately estimating a battery's state of health (SOH) helps prevent battery-powered applications from failing unexpectedly. With the superiority of reducing the data requirement of model training for new batteries, transfer learning (TL) emerges as a promising machine learning approach that applies knowledge learned from a source battery, which has a large amount of data. However, the determination of whether the source battery model is reasonable and which part of information can be transferred for SOH estimation are rarely discussed, despite these being critical components of a successful TL. To address these challenges, this article proposes an interpretable TL-based SOH estimation method by exploiting the temporal dynamic to assist TL, which consists of three parts. First, with the help of dynamic time warping, the temporal data from the discharge time series are synchronized, yielding the warping path of the cycle-synchronized time series responsible for capacity degradation over cycles. Second, the canonical variates retrieved from the spatial path of the cycle-synchronized time series are used for distribution similarity analysis between the source and target batteries. Third, when the distribution similarity is within the predefined threshold, a comprehensive target SOH estimation model is constructed by transferring the common temporal dynamics from the source SOH estimation model and compensating the errors with a residual model from the target battery. Through a widely used open-source benchmark dataset, the estimation error of the proposed method evaluated by the root mean squared error is as low as 0.0034 resulting in a 77 $\%$ accuracy improvement compared with existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
期待未来的自己完成签到,获得积分10
1秒前
丘比特应助曾经天德采纳,获得30
2秒前
missinged完成签到,获得积分10
3秒前
安静凡旋发布了新的文献求助10
3秒前
3秒前
李健的小迷弟应助achenghn采纳,获得10
3秒前
4秒前
Hello完成签到,获得积分10
4秒前
5秒前
bkagyin应助cc采纳,获得10
5秒前
6秒前
6秒前
6秒前
隐形曼青应助子小孙采纳,获得10
7秒前
8秒前
daguan完成签到,获得积分10
8秒前
Son4904完成签到,获得积分10
8秒前
Owen应助安静凡旋采纳,获得10
8秒前
8秒前
Amber完成签到,获得积分10
9秒前
我想爱科研完成签到,获得积分10
9秒前
张真狗发布了新的文献求助10
9秒前
Anna发布了新的文献求助10
9秒前
fjx发布了新的文献求助10
10秒前
Aoren完成签到,获得积分10
10秒前
whisper完成签到,获得积分10
10秒前
情怀应助缥缈老九采纳,获得10
10秒前
xiaolan完成签到,获得积分10
11秒前
ALDXL发布了新的文献求助10
11秒前
甜美冥茗发布了新的文献求助60
11秒前
田様应助棠梨子采纳,获得10
11秒前
dyfsj发布了新的文献求助10
11秒前
ezekiet完成签到 ,获得积分10
12秒前
chenxi3099发布了新的文献求助10
13秒前
13秒前
ksrcc发布了新的文献求助10
14秒前
烟花应助庸人自扰采纳,获得10
14秒前
15秒前
潺潺流水完成签到,获得积分10
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793494
求助须知:如何正确求助?哪些是违规求助? 3338382
关于积分的说明 10289505
捐赠科研通 3054903
什么是DOI,文献DOI怎么找? 1676204
邀请新用户注册赠送积分活动 804239
科研通“疑难数据库(出版商)”最低求助积分说明 761789