亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A granularity-level information fusion strategy on hypergraph transformer for predicting synergistic effects of anticancer drugs

粒度 计算机科学 超图 规范化(社会学) 药品 信息融合 数据挖掘 人工智能 数学 药理学 医学 离散数学 社会学 人类学 操作系统
作者
Wei Wang,Gaolin Yuan,Shitong Wan,Ziwei Zheng,Dong Liu,Hongjun Zhang,Juntao Li,Yun Zhou,Xianfang Wang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (1) 被引量:44
标识
DOI:10.1093/bib/bbad522
摘要

Abstract Combination therapy has exhibited substantial potential compared to monotherapy. However, due to the explosive growth in the number of cancer drugs, the screening of synergistic drug combinations has become both expensive and time-consuming. Synergistic drug combinations refer to the concurrent use of two or more drugs to enhance treatment efficacy. Currently, numerous computational methods have been developed to predict the synergistic effects of anticancer drugs. However, there has been insufficient exploration of how to mine drug and cell line data at different granularity levels for predicting synergistic anticancer drug combinations. Therefore, this study proposes a granularity-level information fusion strategy based on the hypergraph transformer, named HypertranSynergy, to predict synergistic effects of anticancer drugs. HypertranSynergy introduces synergistic connections between cancer cell lines and drug combinations using hypergraph. Then, the Coarse-grained Information Extraction (CIE) module merges the hypergraph with a transformer for node embeddings. In the CIE module, Contranorm is a normalization layer that mitigates over-smoothing, while Gaussian noise addresses local information gaps. Additionally, the Fine-grained Information Extraction (FIE) module assesses fine-grained information’s impact on predictions by employing similarity-aware matrices from drug/cell line features. Both CIE and FIE modules are integrated into HypertranSynergy. In addition, HypertranSynergy achieved the AUC of 0.93${\pm }$0.01 and the AUPR of 0.69${\pm }$0.02 in 5-fold cross-validation of classification task, and the RMSE of 13.77${\pm }$0.07 and the PCC of 0.81${\pm }$0.02 in 5-fold cross-validation of regression task. These results are better than most of the state-of-the-art models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助秦路采纳,获得10
刚刚
5秒前
7秒前
秦路发布了新的文献求助10
13秒前
LiangRen完成签到 ,获得积分10
26秒前
Jack80完成签到,获得积分0
56秒前
56秒前
electricelectric完成签到,获得积分10
1分钟前
焦糖泡芙塔完成签到,获得积分10
1分钟前
3分钟前
老石完成签到 ,获得积分10
3分钟前
子平完成签到 ,获得积分0
3分钟前
华仔应助科研通管家采纳,获得150
4分钟前
852应助科研通管家采纳,获得30
4分钟前
桐桐发布了新的文献求助30
4分钟前
Dasein完成签到 ,获得积分10
5分钟前
5分钟前
6分钟前
6分钟前
6分钟前
今后应助科研通管家采纳,获得10
6分钟前
6分钟前
深情安青应助lztong采纳,获得10
7分钟前
7分钟前
7分钟前
7分钟前
jjwang完成签到,获得积分20
7分钟前
7分钟前
Jason发布了新的文献求助10
7分钟前
浮游应助Jason采纳,获得10
8分钟前
cc完成签到,获得积分10
8分钟前
8分钟前
无花果应助科研通管家采纳,获得10
8分钟前
8分钟前
zsmj23完成签到 ,获得积分0
8分钟前
8分钟前
SHANSHAN发布了新的文献求助10
9分钟前
SHANSHAN完成签到,获得积分10
9分钟前
FEOROCHA完成签到,获得积分20
9分钟前
FEOROCHA发布了新的文献求助10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5173951
求助须知:如何正确求助?哪些是违规求助? 4363610
关于积分的说明 13585709
捐赠科研通 4212210
什么是DOI,文献DOI怎么找? 2310327
邀请新用户注册赠送积分活动 1309390
关于科研通互助平台的介绍 1256822