材料科学
光电子学
金属有机气相外延
化学气相沉积
位错
激光阈值
表面粗糙度
异质结
电流密度
激光器
外延
图层(电子)
光学
纳米技术
复合材料
物理
量子力学
波长
作者
Shining Xu,Shuqi Zhang,Jeremy D. Kirch,Suraj Suri,Nikhil Pokharel,Han Gao,Honghyuk Kim,Pankul Dhingra,Minjoo Larry Lee,D. Botez,L. J. Mawst
摘要
Room-temperature, pulsed-operation lasing of 8.5 μm-emitting InP-based quantum cascade lasers (QCLs), with low threshold-current density and watt-level output power, is demonstrated from structures grown on (001) GaAs substrates by metal-organic chemical vapor deposition. Prior to growing the laser structure, which contains a 35-stage In0.53Ga0.47As/In0.52Al0.48As lattice-matched active-core region, a ∼2 μm-thick nearly fully relaxed InP buffer with strained 1.6 nm-thick InAs quantum-dot-like dislocation-filter layers was grown. A smooth terminal buffer-layer surface, with roughness as low as 0.4 nm on a 10 × 10 μm2 scale, was obtained, while the estimated threading-dislocation density was in the mid-range × 108 cm−2. A series of measurements, on lasers grown on InP metamorphic buffer layers (MBLs) and on native InP substrates, were performed for understanding the impact of the buffer-layer's surface roughness, residual strain, and threading-dislocation density on unipolar devices such as QCLs. As-cleaved devices, grown on InP MBLs, were fabricated as 25 μm × 3 mm deep-etched ridge guides with lateral current injection. The results are pulsed maximum output power of 1.95 W/facet and a low threshold-current density of 1.86 kA/cm2 at 293 K. These values are comparable to those obtained from devices grown on InP: 2.09 W/facet and 2.42 kA/cm2. This demonstrates the relative insensitivity of the device-performance metrics on high residual threading-dislocation density, and high-performance InP-based QCLs emitting near 8 μm can be achieved on lattice-mismatched substrates.
科研通智能强力驱动
Strongly Powered by AbleSci AI