Enhancing spectral imaging with multi-condition image fusion

计算机科学 图像融合 人工智能 融合 图像(数学) 计算机视觉 模式识别(心理学) 哲学 语言学
作者
Joana Teixeira,Tomás Lopes,Diana Capela,Catarina S. Monteiro,Diana Guimarães,Alexandre Lima,P. A. S. Jorge,Nuno A. Silva
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:15 (1)
标识
DOI:10.1038/s41598-024-84058-z
摘要

Spectral Imaging techniques such as Laser-induced Breakdown Spectroscopy (LIBS) and Raman Spectroscopy (RS) enable the localized acquisition of spectral data, providing insights into the presence, quantity, and spatial distribution of chemical elements or molecules within a sample. This significantly expands the accessible information compared to conventional imaging approaches such as machine vision. However, despite its potential, spectral imaging also faces specific challenges depending on the limitations of the spectroscopy technique used, such as signal saturation, matrix interferences, fluorescence, or background emission. To address these challenges, this work explores the potential of using techniques from conventional RGB imaging to enhance the dynamic range of spectral imaging. Drawing inspiration from multi-exposure fusion techniques, we propose an algorithm that calculates a global weight map using exposure and contrast metrics. This map is then used to merge datasets acquired with the same technique under distinct acquisition conditions. With case studies focused on LIBS and Raman Imaging, we demonstrate the potential of our approach to enhance the quality of spectral data, mitigating the impact of the aforementioned limitations. Results show a consistent improvement in overall contrast and peak signal-to-noise ratios of the merged images compared to single-condition images. Additionally, from the application perspective, we also discuss the impact of our approach on sample classification problems. The results indicate that LIBS-based classification of Li-bearing minerals (with Raman serving as the ground truth), is significantly improved when using merged images, reinforcing the advantages of the proposed solution for practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
墨旱莲完成签到,获得积分10
3秒前
青花溅雨发布了新的文献求助10
4秒前
5秒前
古月发布了新的文献求助10
6秒前
7秒前
9秒前
10秒前
awu发布了新的文献求助10
10秒前
13秒前
wanhe发布了新的文献求助100
14秒前
15秒前
也一样发布了新的文献求助20
15秒前
awu完成签到,获得积分10
16秒前
17秒前
bk2020113458完成签到,获得积分10
19秒前
kk发布了新的文献求助10
19秒前
搜集达人应助的墨采纳,获得10
20秒前
今后应助快乐科研采纳,获得10
22秒前
23秒前
Atlantis发布了新的文献求助10
25秒前
26秒前
忐忑的羿完成签到,获得积分10
26秒前
27秒前
28秒前
的墨完成签到,获得积分10
30秒前
冷如松发布了新的文献求助10
31秒前
31秒前
欣欣子发布了新的文献求助10
31秒前
星辰大海应助Rheton采纳,获得10
32秒前
笨笨的石头完成签到,获得积分10
32秒前
青花溅雨发布了新的文献求助10
33秒前
的墨发布了新的文献求助10
33秒前
诺坎普的晚风完成签到,获得积分20
35秒前
儒雅曼岚发布了新的文献求助10
36秒前
南巷完成签到,获得积分10
37秒前
Chen完成签到,获得积分10
37秒前
cmwang发布了新的文献求助10
37秒前
冷如松完成签到,获得积分10
41秒前
小李给我支棱起来完成签到,获得积分10
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780426
求助须知:如何正确求助?哪些是违规求助? 3325838
关于积分的说明 10224370
捐赠科研通 3040880
什么是DOI,文献DOI怎么找? 1669111
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758649