亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Transfer learning between crop types for semantic segmentation of crops versus weeds in precision agriculture

作物 分割 农业 精准农业 农学 学习迁移 人工智能 农业工程 计算机科学 机器学习 生物 工程类 生态学
作者
Petra Bosilj,Erchan Aptoula,Tom Duckett,Grzegorz Cielniak
出处
期刊:Journal of Field Robotics [Wiley]
卷期号:37 (1): 7-19 被引量:137
标识
DOI:10.1002/rob.21869
摘要

Abstract Agricultural robots rely on semantic segmentation for distinguishing between crops and weeds to perform selective treatments and increase yield and crop health while reducing the amount of chemicals used. Deep‐learning approaches have recently achieved both excellent classification performance and real‐time execution. However, these techniques also rely on a large amount of training data, requiring a substantial labeling effort, both of which are scarce in precision agriculture. Additional design efforts are required to achieve commercially viable performance levels under varying environmental conditions and crop growth stages. In this paper, we explore the role of knowledge transfer between deep‐learning‐based classifiers for different crop types, with the goal of reducing the retraining time and labeling efforts required for a new crop. We examine the classification performance on three datasets with different crop types and containing a variety of weeds and compare the performance and retraining efforts required when using data labeled at pixel level with partially labeled data obtained through a less time‐consuming procedure of annotating the segmentation output. We show that transfer learning between different crop types is possible and reduces training times for up to 80%. Furthermore, we show that even when the data used for retraining are imperfectly annotated, the classification performance is within 2% of that of networks trained with laboriously annotated pixel‐precision data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
knight7m完成签到 ,获得积分10
3秒前
4秒前
星星发布了新的文献求助10
11秒前
35秒前
ding应助xakars采纳,获得10
39秒前
39秒前
绝对草草完成签到,获得积分10
54秒前
Hello应助huluobo采纳,获得10
54秒前
56秒前
尚奇发布了新的文献求助10
1分钟前
文献求助完成签到,获得积分10
1分钟前
尚奇完成签到,获得积分10
1分钟前
1分钟前
huluobo发布了新的文献求助10
1分钟前
1分钟前
Jasper应助QQ采纳,获得30
1分钟前
1分钟前
芳华如梦完成签到 ,获得积分10
1分钟前
xakars发布了新的文献求助10
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
lnk完成签到,获得积分10
1分钟前
博ge完成签到 ,获得积分10
1分钟前
lnk发布了新的文献求助10
1分钟前
非泥完成签到,获得积分10
1分钟前
1分钟前
yiyixt完成签到 ,获得积分10
2分钟前
2分钟前
乐乐应助纯真的南琴采纳,获得10
2分钟前
remedy完成签到,获得积分10
3分钟前
penny关注了科研通微信公众号
3分钟前
3分钟前
3分钟前
传奇3应助科研通管家采纳,获得10
3分钟前
penny发布了新的文献求助30
3分钟前
3分钟前
3分钟前
remedy发布了新的文献求助10
3分钟前
Cynthia完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Theories of Human Development 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3922068
求助须知:如何正确求助?哪些是违规求助? 3466826
关于积分的说明 10945410
捐赠科研通 3195739
什么是DOI,文献DOI怎么找? 1765816
邀请新用户注册赠送积分活动 855756
科研通“疑难数据库(出版商)”最低求助积分说明 795077