Spatial modelling with Euclidean distance fields and machine learning

克里金 随机森林 多元自适应回归样条 支持向量机 空间分析 火星探测计划 机器学习 人工智能 计算机科学 回归分析 数据挖掘 数学 算法 统计 贝叶斯多元线性回归 天文 物理
作者
Thorsten Behrens,Karsten Schmidt,Raphael A. Viscarra Rossel,Philipp Gries,Thomas Scholten,R.A. MacMillan
出处
期刊:European Journal of Soil Science [Wiley]
卷期号:69 (5): 757-770 被引量:161
标识
DOI:10.1111/ejss.12687
摘要

Summary This study introduces a hybrid spatial modelling framework, which accounts for spatial non‐stationarity, spatial autocorrelation and environmental correlation. A set of geographic spatially autocorrelated Euclidean distance fields (EDF) was used to provide additional spatially relevant predictors to the environmental covariates commonly used for mapping. The approach was used in combination with machine‐learning methods, so we called the method Euclidean distance fields in machine‐learning (EDM). This method provides advantages over other prediction methods that integrate spatial dependence and state factor models, for example, regression kriging (RK) and geographically weighted regression (GWR). We used seven generic (EDFs) and several commonly used predictors with different regression algorithms in two digital soil mapping (DSM) case studies and compared the results to those achieved with ordinary kriging (OK), RK and GWR as well as the multiscale methods ConMap, ConStat and contextual spatial modelling (CSM). The algorithms tested in EDM were a linear model, bagged multivariate adaptive regression splines (MARS), radial basis function support vector machines (SVM), Cubist, random forest (RF) and a neural network (NN) ensemble. The study demonstrated that DSM with EDM provided results comparable to RK and to the contextual multiscale methods. Best results were obtained with Cubist, RF and bagged MARS. Because the tree‐based approaches produce discontinuous response surfaces, the resulting maps can show visible artefacts when only the EDFs are used as predictors (i.e. no additional environmental covariates). Artefacts were not obvious for SVM and NN and to a lesser extent bagged MARS. An advantage of EDM is that it accounts for spatial non‐stationarity and spatial autocorrelation when using a small set of additional predictors. The EDM is a new method that provides a practical alternative to more conventional spatial modelling and thus it enhances the DSM toolbox. Highlights We present a hybrid mapping approach that accounts for spatial dependence and environmental correlation. The approach is based on a set of generic Euclidean distance fields (EDF). Our Euclidean distance fields in machine learning (EDM) can model non‐stationarity and spatial autocorrelation. The EDM approach eliminates the need for kriging of residuals and produces accurate digital soil maps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hhhhuo发布了新的文献求助10
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
Zoo应助科研通管家采纳,获得30
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
刚刚
研友_VZG7GZ应助科研通管家采纳,获得10
刚刚
刚刚
Jasper应助科研通管家采纳,获得10
刚刚
xiuxiu_27发布了新的文献求助10
1秒前
xue完成签到,获得积分10
1秒前
sooyaaa完成签到,获得积分10
1秒前
1秒前
对苏完成签到,获得积分10
2秒前
3秒前
叽叽叽完成签到,获得积分10
3秒前
小欣完成签到,获得积分10
3秒前
酷波er应助七七七采纳,获得10
4秒前
4秒前
4秒前
对苏发布了新的文献求助20
5秒前
5秒前
5秒前
脑洞疼应助nnnd77采纳,获得10
5秒前
wbgwudi完成签到,获得积分10
5秒前
5秒前
puppy发布了新的文献求助10
6秒前
8R60d8应助扭一扭泡一泡采纳,获得10
6秒前
差不多先生完成签到,获得积分10
6秒前
乙醇完成签到,获得积分10
6秒前
dreammaker完成签到,获得积分10
6秒前
酷波er应助嘉辰采纳,获得10
7秒前
小二郎应助香蕉采纳,获得10
7秒前
7秒前
纯情的远山完成签到,获得积分10
8秒前
科研通AI5应助热心发夹采纳,获得30
8秒前
8秒前
洁净艳一完成签到,获得积分10
8秒前
9秒前
Hudson完成签到,获得积分10
9秒前
高分求助中
Organic Chemistry 30086
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
yolo算法-游泳溺水检测数据集 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4296266
求助须知:如何正确求助?哪些是违规求助? 3822020
关于积分的说明 11965989
捐赠科研通 3464062
什么是DOI,文献DOI怎么找? 1900013
邀请新用户注册赠送积分活动 948095
科研通“疑难数据库(出版商)”最低求助积分说明 850653