亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Radiomics analysis of 3D dose distributions to predict toxicity of radiotherapy for lung cancer

医学 肺癌 放射治疗 无线电技术 列线图 核医学 放射科 肿瘤科 内科学
作者
Vincent Bourbonne,Ronrick Da‐ano,Vincent Jaouen,François Lucia,Gurvan Dissaux,Julien Bert,Olivier Pradier,Dimitris Visvikis,Mathieu Hatt,Ulrike Schick
出处
期刊:Radiotherapy and Oncology [Elsevier BV]
卷期号:155: 144-150 被引量:41
标识
DOI:10.1016/j.radonc.2020.10.040
摘要

Abstract

Purpose

(Chemo)–radiotherapy (RT) is the gold standard treatment for patients with locally advanced lung cancer non accessible for surgery. However, current toxicity prediction models rely on clinical and dose volume histograms (DVHs) and remain unsufficient. The goal of this work is to investigate the added predictive value of the radiomics approach applied to dose maps regarding acute and late toxicities in both the lungs and esophagus.

Methods

Acute and late toxicities scored using the CTCAE v4.0 were retrospectively collected on patients treated with RT in our institution. Radiomic features were extracted from 3D dose maps considering Gy values as grey-levels in images. DVH and usual clinical factors were also considered. Three toxicity prediction models (clinical only, clinical + DVH and combined, i.e., including clinical + DVH + radiomics) were incrementally trained using a neural network on 70% of the patients for prediction of grade ≥2 acute and late pulmonary toxicities (APT/LPT) and grade ≥2 acute esophageal toxicities (AET). After bootstrapping (n = 1000), optimal cut-off values were determined based on the Youden Index. The trained models were then evaluated in the remaining 30% of patients using balanced accuracy (BAcc).

Results

167 patients were treated from 2015 to 2018: 78% non small-cell lung cancers, 14% small-cell lung cancers and 8% other histology with a median age at treatment of 66 years. Respectively, 22.2%, 16.8% and 30.0% experienced APT, LPT and AET. In the training set (n = 117), the corresponding BAcc for clinical only/clinical + DVH/combined were 0.68/0.79/0.92, 0.66/0.77/0.87 and 0.68/0.73/0.84. In the testing evaluation (n = 50), these trained models obtained a corresponding BAcc of 0.69/0.69/0.92, 0.76/0.80/0.89 and 0.58/0.73/0.72.

Conclusion

In patients with a lung cancer treated with RT, radiomic features extracted from 3D dose maps seem to surpass usual models based on clinical factors and DVHs for the prediction of APT and LPT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啊啊啊啊啊啊啊啊啊啊完成签到 ,获得积分10
52秒前
Sandy完成签到,获得积分10
53秒前
LOVER完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
lskjdflass发布了新的文献求助10
1分钟前
zhaoxiaoyan发布了新的文献求助10
1分钟前
万能图书馆应助lskjdflass采纳,获得10
1分钟前
lskjdflass完成签到,获得积分10
1分钟前
1分钟前
可夫司机完成签到 ,获得积分10
2分钟前
123456发布了新的文献求助30
2分钟前
yaoyaoyao完成签到 ,获得积分10
2分钟前
开朗道天完成签到 ,获得积分10
2分钟前
gincle完成签到 ,获得积分10
2分钟前
2分钟前
hensleycr发布了新的文献求助30
3分钟前
杨天天完成签到 ,获得积分10
3分钟前
Hans完成签到,获得积分10
3分钟前
陈龙完成签到,获得积分10
4分钟前
5分钟前
HOPKINSON发布了新的文献求助10
5分钟前
打打应助HOPKINSON采纳,获得10
5分钟前
HOPKINSON完成签到,获得积分20
5分钟前
9分钟前
jin666发布了新的文献求助10
9分钟前
9分钟前
jin666完成签到,获得积分20
9分钟前
炫哥IRIS发布了新的文献求助10
9分钟前
科研通AI5应助huajinoob采纳,获得10
9分钟前
炫哥IRIS完成签到,获得积分10
9分钟前
传奇完成签到 ,获得积分10
9分钟前
鹏程万里发布了新的文献求助10
10分钟前
研友_nEWRJ8完成签到,获得积分10
10分钟前
黑大侠完成签到 ,获得积分10
10分钟前
鹏程万里完成签到,获得积分10
10分钟前
Isaac完成签到 ,获得积分10
10分钟前
10分钟前
olddig关注了科研通微信公众号
10分钟前
huajinoob发布了新的文献求助10
10分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775963
求助须知:如何正确求助?哪些是违规求助? 3321534
关于积分的说明 10206179
捐赠科研通 3036604
什么是DOI,文献DOI怎么找? 1666365
邀请新用户注册赠送积分活动 797395
科研通“疑难数据库(出版商)”最低求助积分说明 757805