A machine learning approach to modelling the spatial variations in the daily fine particulate matter (PM2.5) and nitrogen dioxide (NO2) of Shanghai, China

环境科学 微粒 共线性 空气污染 空间变异性 随机森林 回归分析 线性回归 土地利用 气象学 统计 地理 数学 计算机科学 机器学习 生态学 生物
作者
Xinyi Song,Ya Gao,Yubo Peng,Sen Huang,Chao Liu,Zhong‐Ren Peng
出处
期刊:Environment And Planning B: Urban Analytics And City Science [SAGE]
卷期号:48 (3): 467-483 被引量:3
标识
DOI:10.1177/2399808320975031
摘要

It is challenging to forecast high-resolution spatial-temporal patterns of intra-urban air pollution and identify impacting factors at the regional scale. Studies have attempted to capture features of air pollutants such as fine particulate matter (PM 2.5 ) and nitrogen dioxide (NO 2 ) using land use regression models, but this method overlooks the multi-collinearity of factors, non-linear correlations between factors and air pollutants, and it fails to perform well when processing daily data. However, machine learning is a feasible approach for establishing persuasive intra-urban air pollution daily variation models. In this article, random forest is utilised to establish intra-urban PM 2.5 and NO 2 spatial-temporal variation models and is compared to the traditional land use regression method. Taking the city of Shanghai, China as the case area, 36 station-measured daily records in two and a half years of PM 2.5 and NO 2 concentrations were collected. And over 80 different predictors associated with meteorological and geographical conditions, transportation, community population density, land use and points of interest are used to construct the land use regression and random forest models. Results from the two methods are compared and impacting factors identified. Explained variance ( R 2 ) is used to quantify and compare model performance. The final land use regression model explains 49.3% and 42.2% of the spatial variation in ambient PM 2.5 and NO 2 , respectively, whereas the random forest model explains 78.1% and 60.5% of the variance. Regression mappings for unsampled sites on a grid pattern of 1 km × 1 km are also implemented. The random forest model is shown to perform much better than the land use regression model. In general, the findings suggest that the random forest approach offers a robust improvement in predicting performance compared to the land use regression model in estimating daily spatial variations in ambient PM 2.5 and NO 2 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助王jj采纳,获得10
10秒前
六一儿童节完成签到 ,获得积分0
12秒前
打打应助王jj采纳,获得10
17秒前
酷炫觅双完成签到 ,获得积分10
19秒前
23秒前
红茸茸羊完成签到 ,获得积分10
25秒前
Overlap完成签到 ,获得积分10
27秒前
搜集达人应助王jj采纳,获得10
29秒前
希望天下0贩的0应助王jj采纳,获得10
37秒前
41秒前
情怀应助王jj采纳,获得10
46秒前
jsinm-thyroid完成签到 ,获得积分10
46秒前
笨笨听枫完成签到 ,获得积分10
49秒前
Qian完成签到 ,获得积分10
52秒前
顺利问玉完成签到 ,获得积分10
54秒前
领导范儿应助王jj采纳,获得10
57秒前
不信人间有白头完成签到 ,获得积分0
1分钟前
Lucas应助王jj采纳,获得10
1分钟前
丘比特应助王jj采纳,获得10
1分钟前
大大大忽悠完成签到 ,获得积分10
1分钟前
nbtzy完成签到,获得积分10
1分钟前
hadfunsix完成签到 ,获得积分10
1分钟前
qq完成签到 ,获得积分10
2分钟前
传奇3应助王jj采纳,获得10
2分钟前
aikeyan完成签到,获得积分10
2分钟前
田様应助王jj采纳,获得10
2分钟前
科目三应助王jj采纳,获得10
2分钟前
XJ完成签到,获得积分10
2分钟前
又又完成签到,获得积分10
2分钟前
丘比特应助王jj采纳,获得30
2分钟前
笨笨忘幽完成签到,获得积分0
2分钟前
李健的小迷弟应助王jj采纳,获得10
2分钟前
无一完成签到 ,获得积分10
2分钟前
CLTTT完成签到,获得积分0
2分钟前
番茄豆丁完成签到 ,获得积分10
2分钟前
研友_Zb1rln发布了新的文献求助10
2分钟前
靓丽雨梅完成签到 ,获得积分10
2分钟前
小二郎应助王jj采纳,获得10
2分钟前
海阔天空完成签到 ,获得积分10
3分钟前
善学以致用应助王jj采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5459644
求助须知:如何正确求助?哪些是违规求助? 4565116
关于积分的说明 14297565
捐赠科研通 4490457
什么是DOI,文献DOI怎么找? 2459704
邀请新用户注册赠送积分活动 1449289
关于科研通互助平台的介绍 1424993