Transcriptome sequencing and identification of key callus browning-related genes from petiole callus of tree peony (Paeonia suffruticosa cv. Kao) cultured on media with three browning inhibitors

牡丹 老茧 褐变 叶柄(昆虫解剖学) 生物 植物 转录组 园艺 基因 遗传学 基因表达 膜翅目
作者
Jie Gao,Jingqi Xue,Yuqian Xue,Rong Liu,Xiuxia Ren,Shunli Wang,Xiuxin Zhang
出处
期刊:Plant Physiology and Biochemistry [Elsevier BV]
卷期号:149: 36-49 被引量:33
标识
DOI:10.1016/j.plaphy.2020.01.029
摘要

Tree peony (Paeonia suffruticosa Andrews) has ornamental, oil, and medicinal values, and demand in the markets for uniform tree peony seedlings is increasing. Micropropagation could quickly propagate uniform seedlings. However, the heavy browning phenomenon hinders large-scale development of uniform tree peony seedlings. In this paper, we measured the total phenolic compounds content, and sequenced the transcriptomes of tree peony ‘Kao’ petiole calluses cultured on media with three browning antagonist treatments and fresh petioles to identify the key genes involved in callus browning. Polyvinylpyrrolidone (PVP) treatment can reduce production of phenolic compounds and promote callus regeneration. A total of 218,957 unigenes were obtained from fresh petiole and three kinds of browning petiole calluses by transcriptome sequencing. The average sequence length of unigenes was 446 bp with an N50 of 493 bp. Functional annotation analysis revealed that 43,428, 45,357, 31,194, 30,019, and 21,357 unigenes were annotated using the NCBI-NR database, Swiss-Prot, KOG, GO, and KEGG, respectively. In total, 33 differentially expressed genes (DEGs) were identified as potentially associated with callus browning. Among these DEGs, 12 genes were predicted to participate in phenolic compounds biosynthesis, three genes were predicted to be involved in phenolic compounds oxidation, and six genes were predicted to participate in callus regeneration. Moreover, six transcription factors were observed to be differentially expressed in the fresh petiole and three treated petioles in tree peony. This study comprehensively identifies browning-related gene resources and will possibly help in deciphering the molecular mechanisms of callus browning of tree peony in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
专玩对抗路完成签到,获得积分10
1秒前
豆子完成签到,获得积分10
4秒前
领导范儿应助lkgxwpf采纳,获得10
7秒前
蜗牛完成签到 ,获得积分20
10秒前
16秒前
17秒前
000完成签到,获得积分10
19秒前
Suica发布了新的文献求助10
19秒前
22秒前
24秒前
Lucas应助科研通管家采纳,获得10
24秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
25秒前
陆王牛马发布了新的文献求助20
27秒前
悦耳孤萍发布了新的文献求助10
28秒前
李健应助天空没有极限采纳,获得10
28秒前
30秒前
30秒前
Yunny关注了科研通微信公众号
33秒前
wk完成签到,获得积分10
34秒前
科研狗完成签到,获得积分10
34秒前
兔BF完成签到,获得积分10
35秒前
36秒前
尊敬的半梅完成签到 ,获得积分10
36秒前
38秒前
Owen应助Roseaiwade采纳,获得10
38秒前
欣喜的书芹完成签到 ,获得积分10
39秒前
领导范儿应助悦耳孤萍采纳,获得10
40秒前
隐形的巴豆完成签到,获得积分10
41秒前
42秒前
47秒前
48秒前
chen完成签到 ,获得积分10
49秒前
49秒前
Arbor发布了新的文献求助10
51秒前
氢气发布了新的文献求助10
51秒前
Roseaiwade发布了新的文献求助10
53秒前
大模型应助锂sdsa采纳,获得10
55秒前
懒癌晚期完成签到,获得积分10
55秒前
CR7完成签到,获得积分10
56秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781847
求助须知:如何正确求助?哪些是违规求助? 3327435
关于积分的说明 10231205
捐赠科研通 3042315
什么是DOI,文献DOI怎么找? 1669967
邀请新用户注册赠送积分活动 799434
科研通“疑难数据库(出版商)”最低求助积分说明 758808