Fully automated 3D aortic segmentation of 4D flow MRI for hemodynamic analysis using deep learning

豪斯多夫距离 主动脉瓣 分割 二尖瓣 医学 降主动脉 主动脉 基本事实 数学 人工智能 主动脉弓 核医学 模式识别(心理学) 计算机科学 心脏病学
作者
Haben Berhane,Michael Scott,Mohammed S.M. Elbaz,Kelly Jarvis,Patrick M. McCarthy,James Carr,Chris Malaisrie,Ryan Avery,Alex J. Barker,Joshua D. Robinson,Cynthia K. Rigsby,Michael Markl
出处
期刊:Magnetic Resonance in Medicine [Wiley]
卷期号:84 (4): 2204-2218 被引量:127
标识
DOI:10.1002/mrm.28257
摘要

Purpose To generate fully automated and fast 4D‐flow MRI‐based 3D segmentations of the aorta using deep learning for reproducible quantification of aortic flow, peak velocity, and dimensions. Methods A total of 1018 subjects with aortic 4D‐flow MRI (528 with bicuspid aortic valve, 376 with tricuspid aortic valve and aortic dilation, 114 healthy controls) comprised the data set. A convolutional neural network was trained to generate 3D aortic segmentations from 4D‐flow data. Manual segmentations served as the ground truth ( N = 499 training, N = 101 validation, N = 418 testing). Dice scores, Hausdorff distance, and average symmetrical surface distance were calculated to assess performance. Aortic flow, peak velocity, and lumen dimensions were quantified at the ascending, arch, and descending aorta and compared using Bland‐Altman analysis. Interobserver variability of manual analysis was assessed on a subset of 40. Results Convolutional neural network segmentation required 0.438 ± 0.355 seconds versus 630 ± 254 seconds for manual analysis and demonstrated excellent performance with a median Dice score of 0.951 (0.930‐0.966), Hausdorff distance of 2.80 (2.13‐4.35), and average symmetrical surface distance of 0.176 (0.119‐0.290). Excellent agreement was found for flow, peak velocity, and dimensions with low bias and limits of agreement less than 10% difference versus manual analysis. For aortic volume, limits of agreement were moderate within 16.3%. Interobserver variability (median Dice score: 0.950; Hausdorff distance: 2.45; and average symmetrical surface distance: 0.145) and convolutional neural network–based analysis (median Dice score: 0.953‐0.959; Hausdorff distance: 2.24‐2.91; and average symmetrical surface distance: 0.145‐1.98 to observers) demonstrated similar reproducibility. Conclusions Deep learning enabled fast and automated 3D aortic segmentation from 4D‐flow MRI, demonstrating its potential for efficient clinical workflows. Future studies should investigate its utility for other vasculature and multivendor applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
3秒前
ding应助舒适百川采纳,获得10
3秒前
潇洒一曲完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
6秒前
6秒前
lxy发布了新的文献求助10
7秒前
jgpiao发布了新的文献求助10
7秒前
LQ发布了新的文献求助10
8秒前
细心小鸭子完成签到,获得积分10
8秒前
9秒前
舒心惜文完成签到 ,获得积分10
10秒前
mushen发布了新的文献求助10
10秒前
Ava应助璐璐采纳,获得10
11秒前
zx发布了新的文献求助10
12秒前
未晞完成签到,获得积分10
12秒前
12秒前
12秒前
风一样的我完成签到 ,获得积分10
14秒前
在水一方应助读书的时候采纳,获得10
14秒前
chen发布了新的文献求助10
14秒前
15秒前
16秒前
离异硕士完成签到,获得积分20
18秒前
18秒前
19秒前
LQ完成签到,获得积分20
20秒前
rishky发布了新的文献求助10
20秒前
璐璐完成签到,获得积分10
20秒前
离异硕士发布了新的文献求助20
20秒前
21秒前
21秒前
21秒前
最爱吃火锅完成签到,获得积分10
23秒前
23秒前
FashionBoy应助猪猪hero采纳,获得10
25秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 490
Tasteful Old Age:The Identity of the Aged Middle-Class, Nursing Home Tours, and Marketized Eldercare in China 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4084113
求助须知:如何正确求助?哪些是违规求助? 3623230
关于积分的说明 11493787
捐赠科研通 3337754
什么是DOI,文献DOI怎么找? 1835001
邀请新用户注册赠送积分活动 903663
科研通“疑难数据库(出版商)”最低求助积分说明 821776