Operando optical tracking of single-particle ion dynamics and phase transitions in battery electrodes

粒子(生态学) 离子 化学物理
作者
Alice J. Merryweather,Christoph Schnedermann,Quentin Jacquet,Clare P. Grey,Akshay Rao
出处
期刊:arXiv: Materials Science 被引量:10
标识
DOI:10.1038/s41586-021-03584-2
摘要

Key to advancing lithium-ion battery technology, and in particular fast charging capabilities, is our ability to follow and understand the dynamic processes occurring in operating materials under realistic conditions, in real time, and on the nano- to meso-scale. Currently, operando imaging of lithium-ion dynamics requires sophisticated synchrotron X-ray or electron microscopy techniques, which do not lend themselves to high-throughput material screening. This limits rapid and rational materials improvements. Here we introduce a simple lab-based, optical interferometric scattering microscope to resolve nanoscopic lithium-ion dynamics in battery materials and apply it to follow the repeated cycling of the archetypical cathode material Li$_\textit{x}$CoO$_2$. The method allows us to visualise directly the insulator-metal, solid solution and lithium ordering phase transitions in this material. We determine rates of lithium insertion and removal at the single-particle level and identify different mechanisms that occur on charge vs. discharge. Finally, we capture the dynamic formation of domain boundaries between different crystal orientations associated with the monoclinic lattice distortion at around Li$_{0.5}$CoO$_2$. The high throughput nature of our methodology allows many particles to be sampled across the entire electrode and, moving forward, will enable exploration of the role of dislocations, morphologies and cycling rate on battery degradation. The generality of our imaging concept means that it can be applied to study any battery electrode, and more broadly, systems where the transport of ions is associated with electronic or structural changes, including nanoionic films, ionic conducting polymers, photocatalytic materials and memristors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
layzhj完成签到,获得积分10
1秒前
小明应助瓜i采纳,获得10
2秒前
Orange应助结实小土豆采纳,获得30
3秒前
唐泽雪穗发布了新的文献求助10
4秒前
搬砖人完成签到,获得积分10
4秒前
4秒前
骆驼顶顶发布了新的文献求助10
5秒前
wxx发布了新的文献求助10
5秒前
勤耕苦读发布了新的文献求助10
5秒前
烟花应助11111采纳,获得10
5秒前
6秒前
6秒前
lmm完成签到,获得积分10
9秒前
9秒前
Solaris完成签到,获得积分10
9秒前
冷艳的咖啡完成签到,获得积分20
10秒前
lty发布了新的文献求助20
11秒前
wu基督教完成签到,获得积分20
12秒前
13秒前
13秒前
13秒前
pagoda完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
陈三亮完成签到 ,获得积分10
14秒前
所所应助中国大陆采纳,获得30
14秒前
14秒前
唐泽雪穗发布了新的文献求助10
16秒前
硬币发布了新的文献求助10
17秒前
大模型应助科研通管家采纳,获得10
18秒前
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
大个应助科研通管家采纳,获得10
18秒前
顾矜应助冰封刀君采纳,获得10
18秒前
wanci应助科研通管家采纳,获得10
18秒前
天天快乐应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Optimization and Learning via Stochastic Gradient Search 300
Higher taxa of Basidiomycetes 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4677948
求助须知:如何正确求助?哪些是违规求助? 4055058
关于积分的说明 12539080
捐赠科研通 3749416
什么是DOI,文献DOI怎么找? 2070970
邀请新用户注册赠送积分活动 1099928
科研通“疑难数据库(出版商)”最低求助积分说明 979511