亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hybrid brain-computer interface with motor imagery and error-related brain activity

作者
Mahta Mousavi,Laurens R. Krol,Virginia R. de
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:17 (5): 056041-056041 被引量:11
标识
DOI:10.1088/1741-2552/abaa9d
摘要

Brain-computer interface (BCI) systems read and interpret brain activity directly from the brain. They can provide a means of communication or locomotion for patients suffering from neurodegenerative diseases or stroke. However, non-stationarity of brain activity limits the reliable transfer of the algorithms that were trained during a calibration session to real-time BCI control. One source of non-stationarity is the user's brain response to the BCI output (feedback), for instance, whether the BCI feedback is perceived as an error by the user or not. By taking such sources of non-stationarity into account, the reliability of the BCI can be improved.In this work, we demonstrate a real-time implementation of a hybrid motor imagery BCI combining the information from the motor imagery signal and the error-related brain activity simultaneously so as to gain benefit from both sources.We show significantly improved performance in real-time BCI control across 12 participants, compared to a conventional motor imagery BCI. The significant improvement is in terms of classification accuracy, target hit rate, subjective perception of control and information-transfer rate. Moreover, our offline analyses of the recorded EEG data show that the error-related brain activity provides a more reliable source of information than the motor imagery signal.This work shows, for the first time, that the error-related brain activity classifier compared to the motor imagery classifier is more consistent when trained on calibration data and tested during online control. This likely explains why the proposed hybrid BCI allows for a more reliable means of communication or rehabilitation for patients in need.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一个正经人完成签到,获得积分10
4秒前
完美世界应助Leo采纳,获得10
5秒前
lucy发布了新的文献求助10
6秒前
CodeCraft应助Na采纳,获得10
6秒前
8秒前
9秒前
10秒前
12秒前
277发布了新的文献求助10
14秒前
Leo发布了新的文献求助10
17秒前
Leo完成签到,获得积分10
22秒前
舟舟完成签到 ,获得积分10
26秒前
暗夜男完成签到 ,获得积分10
26秒前
36秒前
科研通AI6应助小李子采纳,获得10
39秒前
Lialia完成签到 ,获得积分10
39秒前
Na发布了新的文献求助10
41秒前
路人甲应助lucy采纳,获得10
44秒前
陈子峰发布了新的文献求助10
46秒前
51秒前
小小的我发布了新的文献求助10
55秒前
57秒前
Na完成签到,获得积分10
58秒前
牛幻香完成签到,获得积分10
1分钟前
Nichols完成签到,获得积分10
1分钟前
艾瑞克发布了新的文献求助10
1分钟前
嗯嗯完成签到 ,获得积分10
1分钟前
1分钟前
希望天下0贩的0应助Jani采纳,获得10
1分钟前
1分钟前
1分钟前
GIINJIU应助小何采纳,获得10
1分钟前
1分钟前
1分钟前
你喜欢什么样子的我演给你看完成签到 ,获得积分10
1分钟前
dogontree发布了新的文献求助10
1分钟前
jerry完成签到,获得积分10
1分钟前
1分钟前
darkpigx完成签到,获得积分10
1分钟前
天天天才完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Parenchymal volume and functional recovery after clamped partial nephrectomy: potential discrepancies 300
Optimization and Learning via Stochastic Gradient Search 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4681470
求助须知:如何正确求助?哪些是违规求助? 4057338
关于积分的说明 12544903
捐赠科研通 3752444
什么是DOI,文献DOI怎么找? 2072420
邀请新用户注册赠送积分活动 1101489
科研通“疑难数据库(出版商)”最低求助积分说明 980823