Hybrid brain-computer interface with motor imagery and error-related brain activity

作者
Mahta Mousavi,Laurens R. Krol,Virginia R. de
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:17 (5): 056041-056041 被引量:11
标识
DOI:10.1088/1741-2552/abaa9d
摘要

Brain-computer interface (BCI) systems read and interpret brain activity directly from the brain. They can provide a means of communication or locomotion for patients suffering from neurodegenerative diseases or stroke. However, non-stationarity of brain activity limits the reliable transfer of the algorithms that were trained during a calibration session to real-time BCI control. One source of non-stationarity is the user's brain response to the BCI output (feedback), for instance, whether the BCI feedback is perceived as an error by the user or not. By taking such sources of non-stationarity into account, the reliability of the BCI can be improved.In this work, we demonstrate a real-time implementation of a hybrid motor imagery BCI combining the information from the motor imagery signal and the error-related brain activity simultaneously so as to gain benefit from both sources.We show significantly improved performance in real-time BCI control across 12 participants, compared to a conventional motor imagery BCI. The significant improvement is in terms of classification accuracy, target hit rate, subjective perception of control and information-transfer rate. Moreover, our offline analyses of the recorded EEG data show that the error-related brain activity provides a more reliable source of information than the motor imagery signal.This work shows, for the first time, that the error-related brain activity classifier compared to the motor imagery classifier is more consistent when trained on calibration data and tested during online control. This likely explains why the proposed hybrid BCI allows for a more reliable means of communication or rehabilitation for patients in need.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
英姑应助kylin采纳,获得10
1秒前
2秒前
3秒前
4秒前
勇敢肥猫发布了新的文献求助10
4秒前
健壮的涑完成签到 ,获得积分10
4秒前
我是老大应助罗中翠采纳,获得10
4秒前
顺心凡发布了新的文献求助10
7秒前
LeoXu完成签到,获得积分10
7秒前
7秒前
我不到啊完成签到,获得积分10
8秒前
科目三应助白小白采纳,获得10
8秒前
10秒前
研友_LN7x6n完成签到,获得积分10
10秒前
风清扬发布了新的文献求助10
11秒前
13秒前
LeoXu发布了新的文献求助10
15秒前
16秒前
16秒前
orixero应助小不溜采纳,获得10
16秒前
18秒前
调皮雨灵完成签到 ,获得积分10
20秒前
22秒前
咿呀咿呀发布了新的文献求助10
22秒前
孙燕应助Jason采纳,获得10
22秒前
拼搏的雨柏完成签到,获得积分10
22秒前
22秒前
23秒前
23秒前
树在西元前完成签到,获得积分10
24秒前
任乐乐发布了新的文献求助20
27秒前
净净岛完成签到,获得积分20
27秒前
27秒前
summy发布了新的文献求助10
29秒前
29秒前
烟花应助cora采纳,获得10
32秒前
SWAGGER123发布了新的文献求助10
33秒前
34秒前
顾矜应助陈金杉采纳,获得10
34秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Quantum Sensors Market 2025-2045: Technology, Trends, Players, Forecasts 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 3914567
求助须知:如何正确求助?哪些是违规求助? 3459985
关于积分的说明 10908891
捐赠科研通 3186594
什么是DOI,文献DOI怎么找? 1761495
邀请新用户注册赠送积分活动 852115
科研通“疑难数据库(出版商)”最低求助积分说明 793189