Physiological determinants of endurance performance

心理学
作者
Paul Sindall
出处
期刊:Elsevier eBooks [Elsevier]
卷期号:: 137-159
标识
DOI:10.1016/b978-0-7020-7489-9.00012-0
摘要

Wireless sensor networks have become incredibly popular due to the Internet of Things' (IoT) rapid development.IoT routing is the basis for the efficient operation of the perception-layer network.As a popular type of machine learning, reinforcement learning techniques have gained significant attention due to their successful application in the field of network communication.In the traditional Routing Protocol for lowpower and Lossy Networks (RPL) protocol, to solve the fairness of control message transmission between IoT terminals, a fair broadcast suppression mechanism, or Drizzle algorithm, is usually used, but the Drizzle algorithm cannot allocate priority.Moreover, the Drizzle algorithm keeps changing its redundant constant k value but never converges to the optimal value of k.To address this problem, this paper uses a combination based on reinforcement learning (RL) and trickle timer.This paper proposes an RL Intelligent Adaptive Trickle-Timer Algorithm (RLATT) for routing optimization of the IoT awareness layer.RLATT has triple-optimized the trickle timer algorithm.To verify the algorithm's effectiveness, the simulation is carried out on Contiki operating system and compared with the standard trickling timer and Drizzle algorithm.Experiments show that the proposed algorithm performs better in terms of packet delivery ratio (PDR), power consumption, network convergence time, and total control cost ratio.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
1秒前
zcl应助锤子采纳,获得50
1秒前
飞龙爵士发布了新的文献求助10
3秒前
3秒前
苏颜玉完成签到,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助50
4秒前
02ZT完成签到,获得积分10
4秒前
6秒前
佩奇发布了新的文献求助10
7秒前
wang完成签到,获得积分10
9秒前
ys6完成签到,获得积分10
9秒前
傻傻的哈密瓜完成签到,获得积分20
9秒前
量子星尘发布了新的文献求助150
10秒前
研友_VZG7GZ应助陈展峰采纳,获得10
10秒前
所所应助zzz采纳,获得10
11秒前
12秒前
酷波er应助哈哈哈哈哈哈采纳,获得50
12秒前
YMM完成签到,获得积分10
13秒前
FashionBoy应助诗蕊采纳,获得10
13秒前
14秒前
华仔应助Jourmore采纳,获得10
14秒前
15秒前
17秒前
陆漫完成签到 ,获得积分10
17秒前
CipherSage应助老迟到的沛萍采纳,获得10
18秒前
18秒前
量子星尘发布了新的文献求助150
19秒前
20秒前
完美世界应助sci采纳,获得10
20秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
充电宝应助科研通管家采纳,获得10
21秒前
浮浮世世应助科研通管家采纳,获得30
21秒前
浮游应助科研通管家采纳,获得10
21秒前
无花果应助科研通管家采纳,获得10
21秒前
今后应助科研通管家采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Higher taxa of Basidiomycetes 300
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4662993
求助须知:如何正确求助?哪些是违规求助? 4045092
关于积分的说明 12512062
捐赠科研通 3737432
什么是DOI,文献DOI怎么找? 2063908
邀请新用户注册赠送积分活动 1093436
科研通“疑难数据库(出版商)”最低求助积分说明 974203