亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-agent deep reinforcement learning for hyperspectral band selection with hybrid teacher guide

高光谱成像 强化学习 选择(遗传算法) 人工智能 钢筋 计算机科学 机器学习 心理学 社会心理学
作者
Jie Feng,Qiyang Gao,Ronghua Shang,Xianghai Cao,Gaiqin Bai,Xiangrong Zhang,Licheng Jiao
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:299: 112044-112044 被引量:2
标识
DOI:10.1016/j.knosys.2024.112044
摘要

Due to the presence of noisy and highly redundant bands in hyperspectral images (HSIs), band selection serves as a key preprocessing for downstream classification tasks. Recently, deep reinforcement learning (DRL) has been developed as a new trend for band selection of HSIs. Existing DRL-based methods often adopt single-agent, which are prone to fall into local optima due to an excessive action space. The multi-agent methods provide a feasible solution, but often require too much computation. To address these problems, a novel multi-agent DRL method with hybrid teacher guide (MH-DRL) is proposed for band selection of HSIs. In MH-DRL, each agent corresponding to a spectral band decides whether this band is selected. Moreover, a presentation-evaluation network (PE-Net) is constructed to design the reward by evaluating the candidate band subsets without any fine-tuning and represent the state by extracting the spatial-spectral features of HSIs. Then, three kinds of experienced band selection models are regarded as the teachers and designed to participate in the band exploration of DRL, which can improve the learning effectiveness and efficiency by accumulating the external knowledge from diverse teacher models. Finally, deep Q-learning algorithm is designed to update the agents and improve their self-learning ability from continuous exploration. Experimental results on three widely-used HSI data verify the performance of the proposed method better than some advanced band selection algorithms of HSIs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
26秒前
Magali发布了新的文献求助10
30秒前
49秒前
zikncy发布了新的文献求助10
55秒前
知行者完成签到 ,获得积分10
1分钟前
helpmepaper完成签到,获得积分0
1分钟前
1分钟前
1分钟前
共享精神应助zikncy采纳,获得10
1分钟前
1分钟前
大个应助科研通管家采纳,获得10
1分钟前
1分钟前
寒冷念文发布了新的文献求助10
2分钟前
2分钟前
科研通AI2S应助寒冷念文采纳,获得30
2分钟前
闪闪蜜粉完成签到 ,获得积分10
2分钟前
2分钟前
NexusExplorer应助风清扬采纳,获得30
3分钟前
3分钟前
3分钟前
子平完成签到 ,获得积分0
3分钟前
zikncy发布了新的文献求助10
3分钟前
科研通AI2S应助zikncy采纳,获得10
4分钟前
4分钟前
4分钟前
久而久之发布了新的文献求助10
4分钟前
风清扬发布了新的文献求助30
4分钟前
reeeveb完成签到 ,获得积分10
4分钟前
wanci应助木禾火采纳,获得10
5分钟前
李哈哈完成签到 ,获得积分20
5分钟前
5分钟前
木禾火发布了新的文献求助10
5分钟前
hank完成签到,获得积分10
5分钟前
菠萝炒饭应助木禾火采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
李哈哈发布了新的文献求助10
5分钟前
隐形曼青应助H_C采纳,获得10
6分钟前
风清扬发布了新的文献求助30
6分钟前
zikncy完成签到,获得积分10
6分钟前
波酱完成签到,获得积分10
6分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Impact of water dispenser establishment on drinking water availability and health status of peri-urban community 560
Implantable Technologies 500
Theories of Human Development 400
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3919900
求助须知:如何正确求助?哪些是违规求助? 3464948
关于积分的说明 10935365
捐赠科研通 3193216
什么是DOI,文献DOI怎么找? 1764528
邀请新用户注册赠送积分活动 854943
科研通“疑难数据库(出版商)”最低求助积分说明 794528