Dynamic feature-based deep reinforcement learning for flow control of circular cylinder with sparse surface pressure sensing

强化学习 圆柱 特征(语言学) 流量(数学) 计算机科学 曲面(拓扑) 材料科学 流量控制(数据) 机械 声学 人工智能 几何学 物理 数学 电信 语言学 哲学
作者
Qiulei Wang,Lei Yan,Gang Hu,Wen‐Li Chen,Jean Rabault,Bernd R. Noack
出处
期刊:Journal of Fluid Mechanics [Cambridge University Press]
卷期号:988 被引量:24
标识
DOI:10.1017/jfm.2024.333
摘要

This study proposes a self-learning algorithm for closed-loop cylinder wake control targeting lower drag and lower lift fluctuations with the additional challenge of sparse sensor information, taking deep reinforcement learning (DRL) as the starting point. The DRL performance is significantly improved by lifting the sensor signals to dynamic features (DFs), which predict future flow states. The resulting DF-based DRL (DF-DRL) automatically learns a feedback control in the plant without a dynamic model. Results show that the drag coefficient of the DF-DRL model is 25 % less than the vanilla model based on direct sensor feedback. More importantly, using only one surface pressure sensor, DF-DRL can reduce the drag coefficient to a state-of-the-art performance of approximately 8 % at Reynolds number $(Re) = 100$ and significantly mitigates lift coefficient fluctuations. Hence, DF-DRL allows the deployment of sparse sensing of the flow without degrading the control performance. This method also exhibits strong robustness in flow control under more complex flow scenarios, reducing the drag coefficient by 32.2 % and 46.55 % at $Re =500$ and 1000, respectively. Additionally, the drag coefficient decreases by 28.6 % in a three-dimensional turbulent flow at $Re =10\,000$ . Since surface pressure information is more straightforward to measure in realistic scenarios than flow velocity information, this study provides a valuable reference for experimentally designing the active flow control of a circular cylinder based on wall pressure signals, which is an essential step toward further developing intelligent control in a realistic multi-input multi-output system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健春完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
4秒前
8秒前
tangyong完成签到,获得积分10
12秒前
冰阔落发布了新的文献求助10
13秒前
弧光完成签到 ,获得积分10
19秒前
火星上的之卉完成签到 ,获得积分10
19秒前
乐正怡完成签到 ,获得积分10
23秒前
六一儿童节完成签到 ,获得积分10
27秒前
小胖完成签到 ,获得积分10
27秒前
量子星尘发布了新的文献求助10
28秒前
热带蚂蚁完成签到 ,获得积分10
31秒前
wisdom完成签到,获得积分10
36秒前
ED应助科研通管家采纳,获得10
38秒前
cctv18应助科研通管家采纳,获得10
38秒前
cctv18应助科研通管家采纳,获得10
38秒前
cctv18应助科研通管家采纳,获得10
39秒前
cctv18应助科研通管家采纳,获得10
39秒前
cctv18应助科研通管家采纳,获得10
39秒前
cctv18应助科研通管家采纳,获得10
39秒前
ED应助科研通管家采纳,获得10
39秒前
coolkid应助科研通管家采纳,获得10
39秒前
cctv18应助科研通管家采纳,获得10
39秒前
cctv18应助科研通管家采纳,获得10
39秒前
cctv18应助科研通管家采纳,获得10
39秒前
39秒前
cctv18应助科研通管家采纳,获得10
39秒前
cctv18应助科研通管家采纳,获得10
39秒前
cctv18应助科研通管家采纳,获得10
39秒前
cctv18应助科研通管家采纳,获得10
39秒前
cctv18应助科研通管家采纳,获得10
39秒前
39秒前
焱焱不忘完成签到 ,获得积分0
41秒前
白昼の月完成签到 ,获得积分0
56秒前
量子星尘发布了新的文献求助10
56秒前
冰阔落完成签到,获得积分10
58秒前
香蕉觅云应助JR采纳,获得10
59秒前
jason完成签到 ,获得积分10
1分钟前
小墨墨完成签到 ,获得积分10
1分钟前
老张完成签到 ,获得积分10
1分钟前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Applied Survey Data Analysis (第三版, 2025) 850
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3883841
求助须知:如何正确求助?哪些是违规求助? 3426171
关于积分的说明 10747083
捐赠科研通 3150984
什么是DOI,文献DOI怎么找? 1739202
邀请新用户注册赠送积分活动 839633
科研通“疑难数据库(出版商)”最低求助积分说明 784734