Development and External Validation of a Multidimensional Deep Learning Model to Dynamically Predict Kidney Outcomes in IgA Nephropathy

医学 统计的 肾病 肾功能 可解释性 内科学 统计 人工智能 计算机科学 内分泌学 糖尿病 数学
作者
Tingyu Chen,Tiange Chen,W Xu,Shaoshan Liang,Feng Xu,Dandan Liang,Xiang Li,Caihong Zeng,Guotong Xie,Zhihong Liu
出处
期刊:Clinical Journal of The American Society of Nephrology [Lippincott Williams & Wilkins]
卷期号:19 (7): 898-907 被引量:3
标识
DOI:10.2215/cjn.0000000000000471
摘要

Key Points A dynamic model predicts IgA nephropathy prognosis based on deep learning. Longitudinal clinical data and deep learning improve predictive accuracy and interpretability in GN. Background Accurately predicting kidney outcomes in IgA nephropathy is crucial for clinical decision making. Insufficient use of longitudinal data in previous studies has limited the accuracy and interpretability of prediction models for failing to reflect the chronic nature of IgA nephropathy. The aim of this study was to establish a multivariable dynamic deep learning model using comprehensive longitudinal data for the prediction of kidney outcomes in IgA nephropathy. Methods In this retrospective cohort study of 2056 patients with IgA nephropathy from 18 kidney centers, a total of 28,317 data points were collected by the sliding window method. Among them, 15,462 windows in a single center were randomly assigned to training (80%) and validation (20%) sets and 8797 windows in 18 kidney centers were assigned to an independent test set. Interpretable multivariable long short-term memory, a deep learning model, was implemented to predict kidney outcomes (kidney failure or 50% decline in kidney function) based on time-invariant variables measured at biopsy and time-variant variables measured during follow-up. Risk performance was evaluated using the Kaplan–Meier analysis and C-statistic. Trajectory analysis was performed to assess the various trends of clinical variables during follow-up. Results The model achieved a higher C-statistic (0.93; 95% confidence interval, 0.92 to 0.95) on the test set than the machine learning prediction model that we developed in a previous study using only baseline information (C-statistic, 0.84; 95% confidence interval, 0.80 to 0.88). The Kaplan–Meier analysis showed that groups with lower predicted risks from the full model survived longer than groups with higher risks. Time-variant variables demonstrated higher importance scores than time-invariant variables. Within time-variant variables, more recent measurements showed higher importance scores. Further interpretation showed that certain trajectory groups of time-variant variables such as serum creatinine and urine protein were associated with elevated risks of adverse outcomes. Conclusions In IgA nephropathy, a deep learning model can be used to accurately and dynamically predict kidney prognosis based on longitudinal data, and time-variant variables show strong ability to predict kidney outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Dsivan完成签到,获得积分10
1秒前
学习完成签到 ,获得积分10
1秒前
科目三应助美好雁荷采纳,获得10
2秒前
hgy19971017完成签到,获得积分10
3秒前
ZW完成签到 ,获得积分10
3秒前
ASA完成签到,获得积分10
4秒前
执着夏山完成签到,获得积分10
4秒前
pray完成签到,获得积分10
5秒前
5秒前
小海应助小树采纳,获得10
6秒前
可爱的世立完成签到,获得积分20
6秒前
Emper发布了新的文献求助10
7秒前
Qo日不落o永霞完成签到,获得积分10
8秒前
8秒前
8秒前
啊啊完成签到,获得积分10
9秒前
wengjiaqi完成签到,获得积分10
9秒前
我不到啊完成签到,获得积分10
9秒前
木光发布了新的文献求助10
10秒前
啊啊发布了新的文献求助10
12秒前
14秒前
平常的问雁完成签到 ,获得积分10
14秒前
搞学术发布了新的文献求助20
15秒前
川川完成签到,获得积分10
16秒前
yanmh完成签到,获得积分10
17秒前
温暖芷文完成签到,获得积分10
18秒前
Jasper应助木光采纳,获得10
20秒前
十一完成签到,获得积分10
22秒前
宇心完成签到,获得积分10
23秒前
慕青应助优秀不愁采纳,获得10
23秒前
太空人完成签到,获得积分10
24秒前
25秒前
hkh发布了新的文献求助10
26秒前
转身在街角完成签到,获得积分10
26秒前
九思完成签到,获得积分10
26秒前
英俊的铭应助狂野篮球采纳,获得10
28秒前
无辜念文完成签到,获得积分10
29秒前
Emper发布了新的文献求助10
30秒前
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782835
求助须知:如何正确求助?哪些是违规求助? 3328176
关于积分的说明 10235104
捐赠科研通 3043209
什么是DOI,文献DOI怎么找? 1670456
邀请新用户注册赠送积分活动 799718
科研通“疑难数据库(出版商)”最低求助积分说明 759030