已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development and External Validation of a Multidimensional Deep Learning Model to Dynamically Predict Kidney Outcomes in IgA Nephropathy

医学 统计的 肾病 肾功能 可解释性 内科学 统计 人工智能 计算机科学 内分泌学 糖尿病 数学
作者
Tingyu Chen,Tiange Chen,W Xu,Shaoshan Liang,Feng Xu,Dandan Liang,Xiang Li,Caihong Zeng,Guotong Xie,Zhihong Liu
出处
期刊:Clinical Journal of The American Society of Nephrology [Lippincott Williams & Wilkins]
卷期号:19 (7): 898-907 被引量:5
标识
DOI:10.2215/cjn.0000000000000471
摘要

Key Points A dynamic model predicts IgA nephropathy prognosis based on deep learning. Longitudinal clinical data and deep learning improve predictive accuracy and interpretability in GN. Background Accurately predicting kidney outcomes in IgA nephropathy is crucial for clinical decision making. Insufficient use of longitudinal data in previous studies has limited the accuracy and interpretability of prediction models for failing to reflect the chronic nature of IgA nephropathy. The aim of this study was to establish a multivariable dynamic deep learning model using comprehensive longitudinal data for the prediction of kidney outcomes in IgA nephropathy. Methods In this retrospective cohort study of 2056 patients with IgA nephropathy from 18 kidney centers, a total of 28,317 data points were collected by the sliding window method. Among them, 15,462 windows in a single center were randomly assigned to training (80%) and validation (20%) sets and 8797 windows in 18 kidney centers were assigned to an independent test set. Interpretable multivariable long short-term memory, a deep learning model, was implemented to predict kidney outcomes (kidney failure or 50% decline in kidney function) based on time-invariant variables measured at biopsy and time-variant variables measured during follow-up. Risk performance was evaluated using the Kaplan–Meier analysis and C-statistic. Trajectory analysis was performed to assess the various trends of clinical variables during follow-up. Results The model achieved a higher C-statistic (0.93; 95% confidence interval, 0.92 to 0.95) on the test set than the machine learning prediction model that we developed in a previous study using only baseline information (C-statistic, 0.84; 95% confidence interval, 0.80 to 0.88). The Kaplan–Meier analysis showed that groups with lower predicted risks from the full model survived longer than groups with higher risks. Time-variant variables demonstrated higher importance scores than time-invariant variables. Within time-variant variables, more recent measurements showed higher importance scores. Further interpretation showed that certain trajectory groups of time-variant variables such as serum creatinine and urine protein were associated with elevated risks of adverse outcomes. Conclusions In IgA nephropathy, a deep learning model can be used to accurately and dynamically predict kidney prognosis based on longitudinal data, and time-variant variables show strong ability to predict kidney outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
He完成签到,获得积分10
1秒前
only完成签到 ,获得积分10
2秒前
李健的粉丝团团长应助Jeff采纳,获得10
4秒前
5秒前
尊敬的花卷完成签到 ,获得积分10
6秒前
Jasper应助木子李采纳,获得10
10秒前
小蟑螂完成签到,获得积分10
12秒前
温暖的鸿完成签到 ,获得积分10
14秒前
14秒前
复杂念梦完成签到 ,获得积分10
15秒前
搜集达人应助科研通管家采纳,获得10
17秒前
田様应助科研通管家采纳,获得10
17秒前
仙人殊恍惚完成签到,获得积分10
17秒前
努力发自然完成签到 ,获得积分10
18秒前
19秒前
lanrete完成签到,获得积分10
20秒前
Jeff发布了新的文献求助10
20秒前
22秒前
25秒前
无限发布了新的文献求助10
27秒前
想想蛋糕发布了新的文献求助10
29秒前
科研通AI2S应助TTTT采纳,获得10
32秒前
www完成签到 ,获得积分10
36秒前
37秒前
上官若男应助jam采纳,获得10
41秒前
二牛完成签到,获得积分10
50秒前
51秒前
酷波er应助xwz626采纳,获得10
51秒前
petrichor完成签到 ,获得积分10
52秒前
量子星尘发布了新的文献求助10
54秒前
搜集达人应助韩思凝采纳,获得10
55秒前
鸣蜩十三完成签到,获得积分10
57秒前
无限完成签到,获得积分10
57秒前
57秒前
丸子完成签到 ,获得积分10
59秒前
1分钟前
HB完成签到,获得积分10
1分钟前
yangzai完成签到 ,获得积分10
1分钟前
大胆班完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Building Quantum Computers 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Encyclopedia of Mathematical Physics 2nd Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4242091
求助须知:如何正确求助?哪些是违规求助? 3775597
关于积分的说明 11855945
捐赠科研通 3430423
什么是DOI,文献DOI怎么找? 1882681
邀请新用户注册赠送积分活动 934738
科研通“疑难数据库(出版商)”最低求助积分说明 841158