Commercial Truck Risk Assessment and Factor Analysis Based on Vehicle Trajectory and In-Vehicle Monitoring Data

卡车 撞车 运输工程 商用车 工程类 计算机科学 汽车工程 程序设计语言
作者
Xuesong Wang,Xiaowei Tang,Tianxiang Fan,Yanru Zhou,Xiaohan Yang
出处
期刊:Transportation Research Record [SAGE Publishing]
标识
DOI:10.1177/03611981241252148
摘要

Truck crashes are generally more serious than passenger vehicle crashes, and they cause more deaths per crash worldwide per the U.S. Department of Transportation’s Fatality Analysis Reporting System. Risk assessment and factor analysis are the keys to preventing truck crashes, but research on commercial trucks has been limited. Currently, freight and insurance companies have collected extensive operating data, now making it possible to obtain deep insights into truck crashes. Vehicle trajectory data and in-vehicle monitoring data were collected for 596 large commercial trucks traveling in Shanghai, China, during 2019. A total of 22 variables were extracted, falling into three aspects: driving behavior, travel characteristics, and warning characteristics. The random forest algorithm was used to select the most important variables for further analysis. Four machine learning models and a mixed effects logistic regression model were developed to link the high-importance variables with crash risk. Results showed that the machine learning models had good predictive performance; the bagging tree model performed best overall, having achieved good performance in the majority of the metrics, with an accuracy of 96.1% and area under the characteristic curve of 0.866. The specific variables significantly associated with crash risk were: average freeway speed, average percentage of time spent speeding, driving hours, percentage of nighttime trips, percentage of freeway trips, and frequency of smoking warnings per 100 km. This study’s findings can be used to support proactive safety management for freight companies and policy formulation for insurance companies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三土发布了新的文献求助10
2秒前
4秒前
4秒前
Artemis完成签到,获得积分10
4秒前
桐桐应助xiao_J采纳,获得10
5秒前
kouryoufu完成签到,获得积分10
5秒前
科研小白完成签到,获得积分10
6秒前
曾淋发布了新的文献求助10
9秒前
10秒前
玉碎星完成签到,获得积分10
10秒前
rye227应助虚拟的惜筠采纳,获得10
11秒前
14秒前
科研小白发布了新的文献求助10
14秒前
稚气满满完成签到 ,获得积分10
15秒前
ninini关注了科研通微信公众号
18秒前
落后醉易发布了新的文献求助10
19秒前
框郑完成签到 ,获得积分10
19秒前
hyc完成签到,获得积分20
20秒前
霍师傅发布了新的文献求助10
20秒前
三土完成签到,获得积分10
21秒前
Cpp完成签到,获得积分10
24秒前
pluto应助张张采纳,获得10
25秒前
研友_ZbP41L完成签到,获得积分10
25秒前
26秒前
吕姆克的月壤完成签到,获得积分10
28秒前
28秒前
zoro应助震动的曲奇采纳,获得10
30秒前
默默白开水完成签到 ,获得积分10
31秒前
离言完成签到,获得积分10
31秒前
夏一苒发布了新的文献求助10
32秒前
胡蝶发布了新的文献求助10
32秒前
YCD应助草木采纳,获得10
33秒前
淡然的芷荷完成签到 ,获得积分10
34秒前
zho驳回了李健应助
35秒前
稳重奇异果应助小胡采纳,获得10
36秒前
37秒前
38秒前
40秒前
小小哈完成签到,获得积分10
40秒前
ninini发布了新的文献求助10
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778047
求助须知:如何正确求助?哪些是违规求助? 3323723
关于积分的说明 10215564
捐赠科研通 3038918
什么是DOI,文献DOI怎么找? 1667711
邀请新用户注册赠送积分活动 798351
科研通“疑难数据库(出版商)”最低求助积分说明 758339