Adaptive Urban Heat Mitigation Through Ensemble Learning: Socio-Spatial Modeling and Intervention Analysis

作者
Wu Ling,Liyang Chu
出处
期刊:Buildings [MDPI AG]
卷期号:15 (21): 3820-3820
标识
DOI:10.3390/buildings15213820
摘要

Urban Heat Islands (UHIs) are intensifying under climate change, exacerbating thermal exposure risks for socially vulnerable populations. While the role of urban environmental features in shaping UHI patterns is well recognized, their differential impacts on diverse social groups remain underexplored—limiting the development of equitable, context-sensitive mitigation strategies. To address this challenge, we employ an interpretable ensemble machine learning framework to quantify how vegetation, water proximity, and built form influence UHI exposure across social strata and simulate the outcomes of alternative urban interventions. Drawing on data from 1660Dissemination Areas in Vancouver, we model UHI across seasonal and diurnal contexts, integrating environmental variables with socio-demographic indicators to evaluate both thermal and equity outcomes. Our ensemble AutoML framework demonstrates strong predictive accuracy across these contexts (R2 up to 0.79), providing reliable estimates of UHI dynamics. Results reveal that increasing vegetation cover consistently delivers the strongest cooling benefits (up to 2.95 °C) while advancing social equity, though fairness improvements become consistent only when vegetation intensity exceeds 1.3 times the baseline level. Water-related features yield additional cooling of approximately 1.15–1.5 °C, whereas built-form interventions yield trade-offs between cooling efficacy and fairness. Notably, modest reductions in building coverage or road density can meaningfully enhance distributional justice with limited thermal compromise. These findings underscore the importance of tailoring mitigation strategies not only for climatic impact but also for social equity. Our study offers a scalable analytical approach for designing just and effective urban climate adaptations, advancing both environmental sustainability and inclusive urban resilience in the face of intensifying heat risks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
詹娜娜完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
书祝完成签到,获得积分10
2秒前
牛牛完成签到,获得积分10
3秒前
英姑应助SGOM采纳,获得10
3秒前
Stygain发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
布噜布噜完成签到,获得积分10
4秒前
tianqiang发布了新的文献求助10
5秒前
5秒前
6秒前
7秒前
桉豆发布了新的文献求助10
7秒前
7秒前
WRZ完成签到 ,获得积分10
7秒前
研友_ZlqeD8完成签到,获得积分10
8秒前
李cq发布了新的文献求助10
8秒前
Allonz发布了新的文献求助10
8秒前
激昂的梦琪完成签到,获得积分10
10秒前
10秒前
996007发布了新的文献求助10
10秒前
潇洒一曲完成签到,获得积分10
10秒前
10秒前
骆沉星完成签到,获得积分20
11秒前
11秒前
Trey发布了新的文献求助10
12秒前
Mao发布了新的文献求助50
12秒前
大侠完成签到 ,获得积分10
12秒前
kyle发布了新的文献求助10
13秒前
stevenli发布了新的文献求助50
13秒前
英俊的铭应助hyt采纳,获得10
13秒前
IMIke完成签到,获得积分10
14秒前
15秒前
嘿嘿应助一只小学弱采纳,获得10
15秒前
量子星尘发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469034
求助须知:如何正确求助?哪些是违规求助? 4572251
关于积分的说明 14334549
捐赠科研通 4499069
什么是DOI,文献DOI怎么找? 2464895
邀请新用户注册赠送积分活动 1453435
关于科研通互助平台的介绍 1427961