Predictive Analysis of Crack Growth in Bearings via Neural Networks

人工神经网络 计算机科学 结构工程 人工智能 工程类
作者
Manpreet Singh,Dharma Teja Gopaluni,Sumit Shoor,Govind Vashishtha,Sumika Chauhan
出处
期刊:Machines [Multidisciplinary Digital Publishing Institute]
卷期号:12 (9): 607-607
标识
DOI:10.3390/machines12090607
摘要

Machine learning (ML) and artificial intelligence (AI) have emerged as the most advanced technologies today for solving issues as well as assessing and forecasting occurrences. The use of AI and ML in various organizations seeks to capitalize on the benefits of vast amounts of data based on scientific approaches, notably machine learning, which may identify patterns of decision-making and minimize the need for human intervention. The purpose of this research work is to develop a suitable neural network model, which is a component of AI and ML, to assess and forecast crack propagation in a bearing with a seeded crack. The bearing was continually run for many hours, and data were retrieved at time intervals that might be utilized to forecast crack growth. The variables root mean square (RMS), crest factor, signal-to-noise ratio (SNR), skewness, kurtosis, and Shannon entropy were collected from the continuously running bearing and utilized as input parameters, with the total crack area and crack width regarded as output parameters. Finally, utilizing several methodologies of the Neural Network tool in MATLAB, a realistic ANN model was trained to predict the crack area and crack width. It was observed that the ANN model performed admirably in predicting data with a better degree of accuracy. Through analysis, it was observed that the SNR was the most relevant parameter in anticipating data in bearing crack propagation, with an accuracy rate of 99.2% when evaluated as a single parameter, whereas in multiple parameter analysis, a combination of kurtosis and Shannon entropy gave a 99.39% accuracy rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小太阳完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
WY完成签到,获得积分10
2秒前
yaoyao完成签到,获得积分10
2秒前
zmc_297关注了科研通微信公众号
2秒前
丘比特应助浮熙采纳,获得10
3秒前
CodeCraft应助哀酱采纳,获得10
3秒前
3秒前
3秒前
zz发布了新的文献求助10
3秒前
Yu完成签到,获得积分10
4秒前
noss发布了新的文献求助10
4秒前
4秒前
等待的南晴完成签到 ,获得积分10
5秒前
脆皮小小酥完成签到,获得积分10
5秒前
盆装锅包肉完成签到,获得积分10
6秒前
Yuan发布了新的文献求助10
7秒前
Howes91完成签到,获得积分10
7秒前
英吉利25发布了新的文献求助10
8秒前
8秒前
8秒前
LUCCAS发布了新的文献求助10
8秒前
帕荣荣完成签到,获得积分10
8秒前
8秒前
闪闪完成签到,获得积分10
9秒前
10秒前
爆米花应助孙宇采纳,获得10
10秒前
11秒前
崔永鹏完成签到,获得积分10
11秒前
萤阳完成签到,获得积分10
11秒前
11秒前
美好寒梦完成签到 ,获得积分10
11秒前
BoBO完成签到,获得积分20
11秒前
空山新雨完成签到,获得积分10
12秒前
COSMAO应助leroan采纳,获得10
12秒前
noss完成签到,获得积分10
12秒前
胡涂涂发布了新的文献求助10
12秒前
坦率的匪应助123采纳,获得10
13秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
求 5G-Advanced NTN空天地一体化技术 pdf版 500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4063856
求助须知:如何正确求助?哪些是违规求助? 3602290
关于积分的说明 11440705
捐赠科研通 3325417
什么是DOI,文献DOI怎么找? 1828098
邀请新用户注册赠送积分活动 898566
科研通“疑难数据库(出版商)”最低求助积分说明 819103