生物相容性材料
明胶
海藻酸钠
钠
材料科学
纳米技术
化学工程
生物医学工程
化学
工程类
有机化学
冶金
作者
Chahrazed Mahmoudi,Naïma Tahraoui Douma,Hacène Mahmoudi,Camelia Elena Iurciuc,Marcel Popa,Mihaela Hamcerencu,Călin Vasile Andrițoiu
标识
DOI:10.20944/preprints202410.0528.v1
摘要
The main goal of this research is to create biocompatible hydrogels using gelatin and a double cross-linking technique involving both covalent and ionic bonds to immobilize propolis. Covalent bonds are formed through Schiff base cross-links between protein-free amino groups (NH2) from the lysine residue and aldehyde groups (CHO) produced by oxidizing sodium alginate with NaIO4, while the ionic bonds are achieved using Mg2+ ions. Hydrogel films were obtained by varying the molar ratios -CHO/NH2 under different pH conditions (3.5 and 5.5). The presence of aldehyde groups in the oxidized sodium alginate (OSA) was confirmed using FTIR and NMR spectroscopy. The oxidation degree was monitored over 48 hours, and the influence of temperature was examined. Results showed that higher -CHO/-NH2 molar ratios led to increased conversion index values of NH2 groups, and a decrease in swelling degree values was observed in mediums with pH of 5.5 and 7.4. The encapsulation and release efficiency of propolis decreased with the increase of the hydrogel cross-linking degree. UV irradiation enhanced the antioxidant activity of both free and encapsulated propolis. These findings offer valuable insights into designing biocompatible hydrogels for propolis immobilization, with potential for controlled release in biomedical and pharmaceutical fields.
科研通智能强力驱动
Strongly Powered by AbleSci AI