GR-pKa: a message-passing neural network with retention mechanism for pKa prediction.

计算机科学 人工神经网络 机制(生物学) 化学 人工智能 哲学 认识论
作者
Runyu Miao,Dantong Liu,Li Mao,Xingyu Chen,Leihao Zhang,Zhen Yuan,Shanshan Shi,Honglin Li,Shiliang Li
出处
期刊:PubMed 卷期号:25 (5)
标识
DOI:10.1093/bib/bbae408
摘要

During the drug discovery and design process, the acid-base dissociation constant (pKa) of a molecule is critically emphasized due to its crucial role in influencing the ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties and biological activity. However, the experimental determination of pKa values is often laborious and complex. Moreover, existing prediction methods exhibit limitations in both the quantity and quality of the training data, as well as in their capacity to handle the complex structural and physicochemical properties of compounds, consequently impeding accuracy and generalization. Therefore, developing a method that can quickly and accurately predict molecular pKa values will to some extent help the structural modification of molecules, and thus assist the development process of new drugs. In this study, we developed a cutting-edge pKa prediction model named GR-pKa (Graph Retention pKa), leveraging a message-passing neural network and employing a multi-fidelity learning strategy to accurately predict molecular pKa values. The GR-pKa model incorporates five quantum mechanical properties related to molecular thermodynamics and dynamics as key features to characterize molecules. Notably, we originally introduced the novel retention mechanism into the message-passing phase, which significantly improves the model's ability to capture and update molecular information. Our GR-pKa model outperforms several state-of-the-art models in predicting macro-pKa values, achieving impressive results with a low mean absolute error of 0.490 and root mean square error of 0.588, and a high R2 of 0.937 on the SAMPL7 dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
心兑完成签到,获得积分10
2秒前
wmz关闭了wmz文献求助
2秒前
3秒前
3秒前
3秒前
丘比特应助坚强的严青采纳,获得10
3秒前
霸气凝云发布了新的文献求助10
3秒前
chlorine完成签到,获得积分10
4秒前
王阳洋发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
Wind应助1013采纳,获得20
5秒前
泽锦臻发布了新的文献求助10
6秒前
XCL完成签到,获得积分10
6秒前
妩媚的海应助万易文采纳,获得10
6秒前
ZJRerrr发布了新的文献求助10
7秒前
葛立峰发布了新的文献求助10
8秒前
8秒前
Hh发布了新的文献求助10
9秒前
9秒前
10秒前
结实猕猴桃完成签到,获得积分10
11秒前
12秒前
12秒前
半。。完成签到,获得积分20
13秒前
13秒前
13秒前
哈哈哈完成签到 ,获得积分10
15秒前
wanci应助17OH采纳,获得10
15秒前
半。。发布了新的文献求助10
16秒前
香蕉觅云应助舒适的采波采纳,获得10
16秒前
18秒前
18秒前
18秒前
mcf6662完成签到,获得积分20
19秒前
sss完成签到,获得积分10
19秒前
科研通AI6应助y9gyn_37采纳,获得10
19秒前
20秒前
星星完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532650
求助须知:如何正确求助?哪些是违规求助? 4621382
关于积分的说明 14577620
捐赠科研通 4561234
什么是DOI,文献DOI怎么找? 2499258
邀请新用户注册赠送积分活动 1479203
关于科研通互助平台的介绍 1450406