AI-Driven Innovations in Building Energy Management Systems: A Review of Potential Applications and Energy Savings

能源管理 能量(信号处理) 能源系统 建筑工程 环境经济学 计算机科学 系统工程 风险分析(工程) 业务 工程类 可再生能源 经济 电气工程 物理 量子力学
作者
Dalia Mohammed Talat Ebrahim Ali,Violeta Motuzienė,Rasa Džiugaitė-Tumėnienė
出处
期刊:Energies [MDPI AG]
卷期号:17 (17): 4277-4277 被引量:30
标识
DOI:10.3390/en17174277
摘要

Despite the tightening of energy performance standards for buildings in various countries and the increased use of efficient and renewable energy technologies, it is clear that the sector needs to change more rapidly to meet the Net Zero Emissions (NZE) scenario by 2050. One of the problems that have been analyzed intensively in recent years is that buildings in operation use much more energy than they were designed to. This problem, known as the energy performance gap, is found in many countries and buildings and is often attributed to the poor management of building energy systems. The application of Artificial Intelligence (AI) to Building Energy Management Systems (BEMS) has untapped potential to address this problem and lead to more sustainable buildings. This paper reviews different AI-based models that have been proposed for different applications and different buildings with the intention to reduce energy consumption. It compares the performance of the different AI-based models evaluated in the reviewed papers by presenting the accuracy and error rates of model performance and identifies where the greatest potential for energy savings could be achieved, and to what extent. The review showed that offices have the greatest potential for energy savings (up to 37%) when they employ AI models for HVAC control and optimization. In residential and educational buildings, the lower intelligence of the existing BEMS results in smaller energy savings (up to 23% and 21%, respectively).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郭蓉洁完成签到 ,获得积分10
刚刚
鲤鱼安露完成签到 ,获得积分10
8秒前
10秒前
xiamovivi完成签到,获得积分10
12秒前
向阳完成签到,获得积分10
12秒前
nancy_liang完成签到 ,获得积分10
13秒前
郦稀完成签到,获得积分10
13秒前
李渠发布了新的文献求助10
14秒前
PDIF-CN2完成签到,获得积分10
14秒前
夕荀完成签到,获得积分10
15秒前
开心榴莲大王完成签到 ,获得积分10
16秒前
YC完成签到 ,获得积分10
17秒前
17秒前
陈砍砍完成签到 ,获得积分10
17秒前
凯瑞完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
21秒前
孤独剑完成签到 ,获得积分10
23秒前
kk完成签到,获得积分10
24秒前
FUNG完成签到 ,获得积分10
25秒前
张豪杰完成签到 ,获得积分10
27秒前
jzs完成签到 ,获得积分10
28秒前
nikehy发布了新的文献求助30
30秒前
浮游应助怡然雁风采纳,获得10
31秒前
方法完成签到,获得积分10
32秒前
37秒前
niNe3YUE应助科研通管家采纳,获得10
40秒前
Owen应助科研通管家采纳,获得10
40秒前
赘婿应助科研通管家采纳,获得10
40秒前
Biscuit应助科研通管家采纳,获得10
40秒前
科研通AI6应助科研通管家采纳,获得10
40秒前
niNe3YUE应助科研通管家采纳,获得10
40秒前
40秒前
在水一方应助科研通管家采纳,获得10
40秒前
LewisAcid应助科研通管家采纳,获得10
40秒前
完美世界应助科研通管家采纳,获得10
40秒前
niNe3YUE应助科研通管家采纳,获得10
41秒前
Biscuit应助科研通管家采纳,获得10
41秒前
搜集达人应助科研通管家采纳,获得10
41秒前
天天快乐应助科研通管家采纳,获得10
41秒前
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5640136
求助须知:如何正确求助?哪些是违规求助? 4752775
关于积分的说明 15008355
捐赠科研通 4798382
什么是DOI,文献DOI怎么找? 2564532
邀请新用户注册赠送积分活动 1523221
关于科研通互助平台的介绍 1482940