Near‐infrared spectroscopy and deep neural networks for early common root rot detection in wheat from multi‐season trials

播种 生长季节 主成分分析 农学 作物 现场试验 开花 温室 数学 生物 栽培 统计
作者
Yiyi Xiong,Cheryl McCarthy,Jacob Humpal,Cassandra Percy
出处
期刊:Agronomy Journal [Wiley]
卷期号:116 (5): 2370-2390 被引量:3
标识
DOI:10.1002/agj2.21648
摘要

Abstract In Australia, the soil‐borne disease common root rot ( Bipolaris sorokiniana ) (CRR) in wheat ( Triticum aestivum L.) leads to substantial yield losses, yet has limited visible aboveground symptoms, making detection and identification labor intensive. Near‐infrared (NIR) spectroscopy offers an early potential identification solution for CRR in wheat and has previously been reported with success for crop disease detection. This study investigated the ability of nondestructive NIR spectroscopy in combination with deep neural networks (DNN), logistic regression (LR), and principal component analysis combined with support vector machines (PCA‐SVM) for early‐stage CRR detection in wheat. NIR spectra of five different wheat varieties with varying resistance to CRR were collected in two seasons of glasshouse and three seasons of field trials using a portable spectrometer. Results demonstrated that DNN outperformed LR and PCA‐SVM, achieving 66%–91% average classification accuracy in glasshouse trials and an average accuracy of 73% with up to 87% in field trials, effectively distinguishing inoculated and non‐inoculated wheat plants from seedling to anthesis stages. Validation with a third season of field data achieved an average of 77% accuracy for the most susceptible variety during the stem elongation stage. NIR reflectance within 1600–1700 nm was identified as most important for estimating CRR presence, with initial detection occurring 35 days after sowing (DAS) in the glasshouse and 46 DAS in the field. In conclusion, a NIR spectrometer with a DNN model successfully performed disease classification, with the potential as a portable early disease detection tool to assist farm management decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不灭完成签到,获得积分20
刚刚
刚刚
2秒前
可爱的函函应助匹诺曹采纳,获得10
3秒前
天天快乐应助如风随水采纳,获得10
4秒前
mx1111完成签到,获得积分10
5秒前
希望天下0贩的0应助羽飞采纳,获得10
5秒前
唐笑发布了新的文献求助10
6秒前
止戈发布了新的文献求助10
6秒前
smartbot发布了新的文献求助20
6秒前
闪闪怀柔完成签到,获得积分10
7秒前
8秒前
Sy完成签到 ,获得积分10
8秒前
陈住气完成签到,获得积分10
9秒前
9秒前
10秒前
11秒前
古藤完成签到 ,获得积分10
11秒前
lyc发布了新的文献求助10
12秒前
zwgao完成签到,获得积分10
13秒前
13秒前
syyy发布了新的文献求助10
14秒前
15秒前
芝麻福福发布了新的文献求助10
15秒前
sunshine完成签到,获得积分20
15秒前
15秒前
小熊饼干发布了新的文献求助20
16秒前
李健应助wz采纳,获得10
16秒前
科目三应助白小白采纳,获得10
17秒前
18秒前
ding应助小鱼采纳,获得10
18秒前
桐桐应助dingdong采纳,获得30
19秒前
Souliko完成签到,获得积分10
19秒前
匹诺曹发布了新的文献求助10
19秒前
fighting发布了新的文献求助10
19秒前
星辰大海应助止戈采纳,获得10
20秒前
功不唐捐完成签到,获得积分10
21秒前
纯情的馒头完成签到,获得积分10
21秒前
hsk发布了新的文献求助10
21秒前
上官若男应助sunshine采纳,获得10
21秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807074
求助须知:如何正确求助?哪些是违规求助? 3351860
关于积分的说明 10356237
捐赠科研通 3067840
什么是DOI,文献DOI怎么找? 1684762
邀请新用户注册赠送积分活动 809899
科研通“疑难数据库(出版商)”最低求助积分说明 765767