Remaining useful life prediction of turbofan engines based on dual attention mechanism guided parallel CNN-LSTM

涡扇发动机 对偶(语法数字) 计算机科学 机制(生物学) 人工智能 航空航天工程 物理 工程类 哲学 语言学 量子力学
作者
Baokun Han,Peiwen Yin,Zongzhen Zhang,Jinrui Wang,Huaiqian Bao,Li-Hua Song,Xinwei Liu,Hao Ma,Dawei Wang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (1): 016160-016160
标识
DOI:10.1088/1361-6501/ad8946
摘要

Abstract Remaining useful life (RUL) prediction is an valuable research task for predictive health management of aero engines, which is crucial to enhance the safety, dependability and economy of the motor. Accurate prediction of remaining engine service life is an important means for the effectively monitoring of engine operating conditions. The forecasting accuracy of turbofan RUL is inadequate with the traditional single-parameter, single-stage mode. To boost the precision of aero-engine RUL anticipation, a novel mode is recommended, based on a parallel convolutional neural network (CNN) with a long and short-term memory (LSTM) neural network and a dual attention mechanism, named PCLD. The degradation information directly from time series sensor data. The advantages of CNN networks and LSTM networks in feature mining and time series processing, respectively, are employed to process time series data, which is conducive to preventing the loss of important element in the data. At last, the experimental results on the aero-engine performance recession dataset C-MAPSS demonstrate that the method outperforms the currently popular models with better robustness and higher prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助文艺大米采纳,获得10
刚刚
2秒前
史小霜发布了新的文献求助30
3秒前
小二郎应助江峰采纳,获得10
3秒前
单纯雨琴应助科研通管家采纳,获得10
3秒前
单纯雨琴应助科研通管家采纳,获得10
3秒前
典雅碧空应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
jesse完成签到,获得积分10
3秒前
单纯雨琴应助科研通管家采纳,获得10
3秒前
pluto应助科研通管家采纳,获得10
3秒前
受伤冬寒发布了新的文献求助10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
冰魂应助超级的夜白采纳,获得10
3秒前
结实的林应助科研通管家采纳,获得20
3秒前
领导范儿应助科研通管家采纳,获得10
4秒前
pluto应助科研通管家采纳,获得10
4秒前
4秒前
pluto应助科研通管家采纳,获得10
4秒前
pluto应助科研通管家采纳,获得10
4秒前
典雅碧空应助科研通管家采纳,获得20
4秒前
pluto应助科研通管家采纳,获得10
4秒前
苏小轼发布了新的文献求助10
4秒前
pluto应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得30
5秒前
英姑应助科研通管家采纳,获得10
5秒前
单纯雨琴应助科研通管家采纳,获得10
5秒前
单纯雨琴应助科研通管家采纳,获得10
5秒前
嘻嘻应助科研通管家采纳,获得10
5秒前
laoku应助科研通管家采纳,获得20
5秒前
5秒前
人机9527发布了新的文献求助10
7秒前
7秒前
GGKing发布了新的文献求助10
7秒前
读者完成签到,获得积分10
8秒前
小跳完成签到,获得积分10
8秒前
9秒前
量子星尘发布了新的文献求助10
12秒前
江峰发布了新的文献求助10
12秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
The User Experience Team of One (2nd Edition) 600
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3881037
求助须知:如何正确求助?哪些是违规求助? 3423371
关于积分的说明 10734281
捐赠科研通 3148452
什么是DOI,文献DOI怎么找? 1737083
邀请新用户注册赠送积分活动 838655
科研通“疑难数据库(出版商)”最低求助积分说明 784046