Joint Self-Training and Rebalanced Consistency Learning for Semi-Supervised Change Detection

标记数据 计算机科学 人工智能 一致性(知识库) 加权 稳健性(进化) 接头(建筑物) 模式识别(心理学) 监督学习 半监督学习 无监督学习 限制 训练集 机器学习 人工神经网络 医学 机械工程 基因 放射科 工程类 生物化学 建筑工程 化学
作者
Xueting Zhang,Xin Huang,Jiayi Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-13 被引量:20
标识
DOI:10.1109/tgrs.2023.3314452
摘要

Change detection (CD) is an important Earth observation task that can monitor change areas at two times from the view of space. However, fully-supervised CD has a heavy dependence on numerous manually-labeled data, limiting their applications in practice. Beyond the fully-supervised setting, semi-supervised change detection (SSCD), which uses a few labeled data to guide the unsupervised learning of dominant unlabeled data, has attracted increasing attention for its significant advantage in alleviating the demand for annotations. To this end, in this paper we propose a joint self-training and rebalanced consistency learning (ST-RCL) framework for SSCD, which consists of a basic supervised branch for the labeled data and a novel unsupervised branch for the unlabeled data. To make full use of the unlabeled data, the unsupervised branch generates pseudo-labels from weakly-augmented unlabeled remote sensing image (RSI) pairs to supervise the CD of two strongly-augmented counterparts, including an unrotated version and a rotated version. On one hand, the unrotated unlabeled RSI pairs are pseudo-supervised with the pseudo-labels by confidence-based self-training. On the other hand, to further enhance model robustness to rotation non-equivariance and imbalanced distribution, the predictions of rotated unlabeled RSI pairs are aligned to the pseudo-labels by a well-designed rebalanced consistency learning strategy based on uncertainty-based class weighting. Extensive experiments are performed on four widely-used CD datasets, and the proposed ST-RCL yields new state-of-the-art results on all these datasets in comparison with some other SSCD methods, demonstrating its effectiveness and generalization. Our code will be available at https://github.com/zxt9/STRCL-SSCD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄登锋给黄登锋的求助进行了留言
刚刚
lkx发布了新的文献求助10
刚刚
1秒前
小鲨鱼完成签到,获得积分10
1秒前
ycl发布了新的文献求助20
2秒前
周肆发布了新的文献求助10
4秒前
lix完成签到,获得积分20
5秒前
FF完成签到 ,获得积分10
5秒前
寒塘完成签到,获得积分10
6秒前
6秒前
aaronpancn发布了新的文献求助10
6秒前
6秒前
羊羊完成签到 ,获得积分10
8秒前
8秒前
lix发布了新的文献求助10
10秒前
Dxyyy发布了新的文献求助10
10秒前
11秒前
DEK完成签到,获得积分10
11秒前
11秒前
烙饼完成签到,获得积分10
12秒前
John完成签到,获得积分10
12秒前
狂野元枫发布了新的文献求助10
12秒前
万能图书馆应助牛角面包采纳,获得10
13秒前
Egg完成签到 ,获得积分10
14秒前
layzhj发布了新的文献求助10
16秒前
17秒前
17秒前
baronge完成签到,获得积分10
17秒前
18秒前
科研通AI2S应助无奈狗采纳,获得10
18秒前
18秒前
18秒前
不默生发布了新的文献求助10
21秒前
21秒前
yaoayao发布了新的文献求助10
21秒前
21秒前
星辰大海应助ChenYX采纳,获得10
22秒前
博负一完成签到,获得积分10
22秒前
小李吃梨发布了新的文献求助30
23秒前
光亮语梦完成签到 ,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5184646
求助须知:如何正确求助?哪些是违规求助? 4370384
关于积分的说明 13610110
捐赠科研通 4222527
什么是DOI,文献DOI怎么找? 2315881
邀请新用户注册赠送积分活动 1314482
关于科研通互助平台的介绍 1263386