Inversion of maize leaf area index from UAV hyperspectral and multispectral imagery

多光谱图像 高光谱成像 遥感 叶面积指数 精准农业 多光谱模式识别 经验模型 均方误差 克里金 反演(地质) 大气辐射传输码 计算机科学 环境科学 数学 辐射传输 地理 机器学习 统计 地质学 构造盆地 生物 生态学 古生物学 物理 考古 量子力学 程序设计语言 农业
作者
Anting Guo,Huichun Ye,Wenjiang Huang,Binxiang Qian,Jingjing Wang,Yubin Lan,Shizhou Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:212: 108020-108020 被引量:31
标识
DOI:10.1016/j.compag.2023.108020
摘要

The accurate estimation of Leaf area index (LAI) is of great importance for evaluating crop growth in precision agriculture. Although previous studies have confirmed great advantages of unmanned aerial vehicle (UAV) remote sensing for LAI estimation in the field, accurate, reliable and efficient LAI estimation with practical applications still faces challenges due to model limitations and variations in the spectral and spatial scales of UAV remote sensing. In this study, we constructed the hybrid inversion models (HIMs) for estimating maize LAI using UAV hyperspectral and multispectral data, respectively. The HIMs combines the advantages of radiative transfer models and machine learning regression algorithms, and are optimized by active learning (AL) algorithm. The results reveal that the inclusion of AL in the HIMs an effectively improve the accuracy of the model. The Gaussian process regression-based HIM with AL (GPR-AL-HIM) obtained the best performance in LAI estimation (R2 = 0.86, RMSE = 0.30 and NRMSE = 10.16 %). Meanwhile, GPR-AL-HIM was also determined to outperform the physical model based on the look-up-table (LUT) and the empirical statistical model based on vegetation indices. The model was validated with another independent dataset and also obtained a high accuracy (R2 = 0.84, RMSE = 0.23 and NRMSE = 11.78 %). In addition, we also explore the effects of the UAV spectral (multispectral and hyperspectral) and image spatial resolution on LAI inversion. The results reveal that the hyperspectral data exhibit an advantage over the multispectral data for LAI inversion using the GPR-AL-HIM. The accuracy of the GPR-AL-HIM decreased with increasing spatial resolution, but the accuracy varied less within a certain spatial resolution range (e.g., R2 of 0.86–0.84 and RMSE of 0.30–0.33 for hyperspectral images at 1.5–15 cm spatial resolution). Furthermore, the LAI distribution in the study area was accurately mapped using the GPR-AL-HIM with the hyperspectral and multispectral images, with the latter exhibiting lower uncertainties. The GPR-AL-HIM is mainly aimed at maize, and in the future, we will explore the applicability of this model in other crops. This work provides a reference for the design of a monitoring scheme with crop parameters based on UAV remote sensing in precision agriculture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助baibaibai采纳,获得10
刚刚
刚刚
Sunrise完成签到,获得积分10
刚刚
狂吃五碗饭完成签到,获得积分10
刚刚
许甜甜鸭应助小金鱼儿采纳,获得10
1秒前
SciGPT应助工兵小蚂蚁采纳,获得10
1秒前
1秒前
2秒前
科研通AI5应助少年采纳,获得10
2秒前
幽默的泥猴桃完成签到,获得积分10
2秒前
shw完成签到,获得积分10
2秒前
kc135完成签到,获得积分10
3秒前
笨笨芯发布了新的文献求助10
3秒前
xiaowan完成签到,获得积分10
3秒前
BiuBiu怪完成签到,获得积分10
3秒前
三里墩头给Qian的求助进行了留言
4秒前
GaoZz完成签到,获得积分10
4秒前
chx2256120完成签到,获得积分10
4秒前
大饼完成签到,获得积分10
4秒前
车灵波完成签到 ,获得积分10
4秒前
hhh发布了新的文献求助30
4秒前
勤劳绿毛龟完成签到,获得积分10
4秒前
抹茶夏天完成签到,获得积分10
5秒前
5秒前
白元正完成签到,获得积分10
5秒前
5秒前
香菜完成签到,获得积分10
6秒前
初见应助玩笑采纳,获得10
6秒前
7秒前
哈哈哈完成签到,获得积分10
7秒前
小蓝完成签到,获得积分10
7秒前
精明的盼雁完成签到,获得积分10
8秒前
GXLong完成签到,获得积分10
8秒前
忧郁盼夏发布了新的文献求助10
8秒前
Duoo发布了新的文献求助10
9秒前
笨笨芯完成签到,获得积分10
9秒前
9秒前
小菜鸡发布了新的文献求助10
10秒前
10秒前
DJM完成签到 ,获得积分10
10秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders 800
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830731
求助须知:如何正确求助?哪些是违规求助? 3373073
关于积分的说明 10477436
捐赠科研通 3093209
什么是DOI,文献DOI怎么找? 1702398
邀请新用户注册赠送积分活动 818982
科研通“疑难数据库(出版商)”最低求助积分说明 771173