A robust seizure detection and prediction method with feature selection and spatio-temporal casual neural network model

计算机科学 稳健性(进化) 特征选择 人工智能 癫痫 模式识别(心理学) 软件可移植性 人工神经网络 特征(语言学) 机器学习 数据挖掘 生物化学 化学 语言学 哲学 神经科学 生物 基因 程序设计语言
作者
Yuanming Zhang,Xin Li,Shuang Wang,Haibin Shen,Kejie Huang
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:20 (5): 056036-056036 被引量:3
标识
DOI:10.1088/1741-2552/acfff5
摘要

Objective.Epilepsy is a fairly common condition that affects the brain and causes frequent seizures. The sudden and recurring epilepsy brings a series of safety hazards to patients, which seriously affects the quality of their life. Therefore, real-time diagnosis of electroencephalogram (EEG) in epilepsy patients is of great significance. However, the conventional methods take in a tremendous amount of features to train the models, resulting in high computation cost and low portability. Our objective is to propose an efficient, light and robust seizure detecting and predicting algorithm.Approach.The algorithm is based on an interpretative feature selection method and spatial-temporal causal neural network (STCNN). The feature selection method eliminates the interference factors between different features and reduces the model size and training difficulties. The STCNN model takes both temporal and spatial information to accurately and dynamically track and diagnose the changing of the features. Considering the differences between medical application scenarios and patients, leave-one-out cross validation (LOOCV) and cross-patient validation (CPV) methods are used to conduct experiments on the dataset collected at the Children's Hospital Boston (CHB-MIT), Siena and Kaggle competition datasets.Main results.In LOOCV-based method, the detection accuracy and prediction sensitivity have been improved. A significant improvement is also achieved in the CPV-based method.Significance.The experimental results show that our proposed algorithm exhibits superior performance and robustness in seizure detection and prediction, which indicates it has higher capability to deal with different and complicated clinical situations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤奋的幻莲完成签到,获得积分10
1秒前
孤独念柏完成签到,获得积分10
1秒前
articlechaser完成签到,获得积分10
2秒前
思源应助源源采纳,获得10
3秒前
贰叁发布了新的文献求助10
3秒前
4秒前
minmi发布了新的文献求助20
4秒前
xuan发布了新的文献求助10
4秒前
zhouyan完成签到,获得积分10
5秒前
fktym完成签到,获得积分10
5秒前
6秒前
6秒前
lmr完成签到,获得积分10
6秒前
Zoo应助栗子采纳,获得50
8秒前
瓦莉雅完成签到,获得积分10
8秒前
小郑小郑发布了新的文献求助20
11秒前
星辰大海应助shjjj采纳,获得10
11秒前
12秒前
打打应助公主stellar采纳,获得10
12秒前
drfang发布了新的文献求助10
12秒前
勤劳的俊驰应助xiangjun采纳,获得10
12秒前
科研通AI5应助陈陈采纳,获得10
13秒前
深情安青应助丢星采纳,获得10
13秒前
zjw完成签到,获得积分10
15秒前
斯文败类应助孤独曲奇采纳,获得10
17秒前
18秒前
20秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
21秒前
21秒前
斯文败类应助jjjjiang采纳,获得10
22秒前
23秒前
23秒前
花成花完成签到,获得积分20
24秒前
24秒前
fang完成签到,获得积分10
25秒前
江峰发布了新的文献求助10
25秒前
25秒前
Akim应助易小名采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 3000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4284941
求助须知:如何正确求助?哪些是违规求助? 3812379
关于积分的说明 11941834
捐赠科研通 3458875
什么是DOI,文献DOI怎么找? 1896986
邀请新用户注册赠送积分活动 945639
科研通“疑难数据库(出版商)”最低求助积分说明 849351