A robust seizure detection and prediction method with feature selection and spatio-temporal casual neural network model

计算机科学 稳健性(进化) 特征选择 人工智能 癫痫 模式识别(心理学) 软件可移植性 人工神经网络 特征(语言学) 机器学习 数据挖掘 哲学 基因 生物 神经科学 化学 程序设计语言 生物化学 语言学
作者
Yuanming Zhang,Xin Li,Shuang Wang,Haibin Shen,Kejie Huang
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:20 (5): 056036-056036 被引量:3
标识
DOI:10.1088/1741-2552/acfff5
摘要

Objective.Epilepsy is a fairly common condition that affects the brain and causes frequent seizures. The sudden and recurring epilepsy brings a series of safety hazards to patients, which seriously affects the quality of their life. Therefore, real-time diagnosis of electroencephalogram (EEG) in epilepsy patients is of great significance. However, the conventional methods take in a tremendous amount of features to train the models, resulting in high computation cost and low portability. Our objective is to propose an efficient, light and robust seizure detecting and predicting algorithm.Approach.The algorithm is based on an interpretative feature selection method and spatial-temporal causal neural network (STCNN). The feature selection method eliminates the interference factors between different features and reduces the model size and training difficulties. The STCNN model takes both temporal and spatial information to accurately and dynamically track and diagnose the changing of the features. Considering the differences between medical application scenarios and patients, leave-one-out cross validation (LOOCV) and cross-patient validation (CPV) methods are used to conduct experiments on the dataset collected at the Children's Hospital Boston (CHB-MIT), Siena and Kaggle competition datasets.Main results.In LOOCV-based method, the detection accuracy and prediction sensitivity have been improved. A significant improvement is also achieved in the CPV-based method.Significance.The experimental results show that our proposed algorithm exhibits superior performance and robustness in seizure detection and prediction, which indicates it has higher capability to deal with different and complicated clinical situations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
kkyy发布了新的文献求助10
3秒前
FashionBoy应助现实的天蓝采纳,获得10
3秒前
MZX发布了新的文献求助10
4秒前
ding应助言非离采纳,获得50
4秒前
4秒前
star应助莫白采纳,获得10
4秒前
xieji发布了新的文献求助10
4秒前
5秒前
5秒前
qwe发布了新的文献求助10
5秒前
小刘应助Barret采纳,获得10
7秒前
喜悦蚂蚁完成签到,获得积分10
7秒前
SciGPT应助highhigh采纳,获得10
8秒前
碗碗豆喵发布了新的文献求助20
8秒前
研友_VZG7GZ应助Xx采纳,获得10
8秒前
spark完成签到 ,获得积分10
9秒前
9秒前
Hello应助高贵振家采纳,获得10
9秒前
小文子完成签到,获得积分10
10秒前
FashionBoy应助陈宇采纳,获得10
10秒前
科研狗发布了新的文献求助10
10秒前
阿怜完成签到,获得积分10
11秒前
11秒前
王富贵发布了新的文献求助10
11秒前
小二郎应助xieji采纳,获得10
11秒前
cc完成签到,获得积分10
12秒前
HYD完成签到 ,获得积分10
12秒前
12秒前
youzhe发布了新的文献求助10
13秒前
118关闭了118文献求助
13秒前
SciGPT应助似水无痕采纳,获得10
14秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
甜蜜的灵凡完成签到,获得积分10
16秒前
16秒前
16秒前
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532310
求助须知:如何正确求助?哪些是违规求助? 4621065
关于积分的说明 14576628
捐赠科研通 4560938
什么是DOI,文献DOI怎么找? 2499025
邀请新用户注册赠送积分活动 1479001
关于科研通互助平台的介绍 1450265