计算机科学
稳健性(进化)
特征选择
人工智能
癫痫
模式识别(心理学)
软件可移植性
人工神经网络
特征(语言学)
机器学习
数据挖掘
生物化学
化学
语言学
哲学
神经科学
生物
基因
程序设计语言
作者
Yuanming Zhang,Xin Li,Shuang Wang,Haibin Shen,Kejie Huang
标识
DOI:10.1088/1741-2552/acfff5
摘要
Objective.Epilepsy is a fairly common condition that affects the brain and causes frequent seizures. The sudden and recurring epilepsy brings a series of safety hazards to patients, which seriously affects the quality of their life. Therefore, real-time diagnosis of electroencephalogram (EEG) in epilepsy patients is of great significance. However, the conventional methods take in a tremendous amount of features to train the models, resulting in high computation cost and low portability. Our objective is to propose an efficient, light and robust seizure detecting and predicting algorithm.Approach.The algorithm is based on an interpretative feature selection method and spatial-temporal causal neural network (STCNN). The feature selection method eliminates the interference factors between different features and reduces the model size and training difficulties. The STCNN model takes both temporal and spatial information to accurately and dynamically track and diagnose the changing of the features. Considering the differences between medical application scenarios and patients, leave-one-out cross validation (LOOCV) and cross-patient validation (CPV) methods are used to conduct experiments on the dataset collected at the Children's Hospital Boston (CHB-MIT), Siena and Kaggle competition datasets.Main results.In LOOCV-based method, the detection accuracy and prediction sensitivity have been improved. A significant improvement is also achieved in the CPV-based method.Significance.The experimental results show that our proposed algorithm exhibits superior performance and robustness in seizure detection and prediction, which indicates it has higher capability to deal with different and complicated clinical situations.
科研通智能强力驱动
Strongly Powered by AbleSci AI