Case studies of clinical decision-making through prescriptive models based on machine learning

模糊认知图 计算机科学 机器学习 人工智能 决策支持系统 风险分析(工程) 模糊逻辑 医学 自适应神经模糊推理系统 模糊控制系统
作者
William Hoyos,José Aguilar,Mayra Raciny,Mauricio Toro
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:242: 107829-107829 被引量:6
标识
DOI:10.1016/j.cmpb.2023.107829
摘要

The development of computational methodologies to support clinical decision-making is of vital importance to reduce morbidity and mortality rates. Specifically, prescriptive analytic is a promising area to support decision-making in the monitoring, treatment and prevention of diseases. These aspects remain a challenge for medical professionals and health authorities.In this study, we propose a methodology for the development of prescriptive models to support decision-making in clinical settings. The prescriptive model requires a predictive model to build the prescriptions. The predictive model is developed using fuzzy cognitive maps and the particle swarm optimization algorithm, while the prescriptive model is developed with an extension of fuzzy cognitive maps that combines them with genetic algorithms. We evaluated the proposed approach in three case studies related to monitoring (warfarin dose estimation), treatment (severe dengue) and prevention (geohelminthiasis) of diseases.The performance of the developed prescriptive models demonstrated the ability to estimate warfarin doses in coagulated patients, prescribe treatment for severe dengue and generate actions aimed at the prevention of geohelminthiasis. Additionally, the predictive models can predict coagulation indices, severe dengue mortality and soil-transmitted helminth infections.The developed models performed well to prescribe actions aimed to monitor, treat and prevent diseases. This type of strategy allows supporting decision-making in clinical settings. However, validations in health institutions are required for their implementation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
671完成签到,获得积分10
刚刚
坦率秋玲完成签到,获得积分10
1秒前
兰w完成签到,获得积分10
2秒前
2秒前
米米发布了新的文献求助10
3秒前
kathleen发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
爆米花应助苏栀采纳,获得10
5秒前
SciGPT应助你好帅的哦采纳,获得10
5秒前
桐桐应助机灵柚子采纳,获得10
6秒前
xzy完成签到,获得积分10
6秒前
6秒前
刻苦觅荷完成签到,获得积分10
6秒前
啦啦啦123发布了新的文献求助10
6秒前
mage发布了新的文献求助10
7秒前
有足量NaCl发布了新的文献求助10
8秒前
sugar发布了新的文献求助10
8秒前
pluvia完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
10秒前
谨慎的宝贝完成签到,获得积分10
11秒前
gyro发布了新的文献求助10
12秒前
12秒前
JamesPei应助zgm断翅蝴蝶采纳,获得20
12秒前
啦啦啦123完成签到,获得积分10
12秒前
xzy发布了新的文献求助10
13秒前
14秒前
gyro完成签到,获得积分10
17秒前
18秒前
19秒前
19秒前
Fox完成签到,获得积分20
20秒前
21秒前
21秒前
忽昨日完成签到,获得积分10
21秒前
54完成签到,获得积分10
22秒前
科研通AI2S应助机灵柚子采纳,获得10
22秒前
H的流年发布了新的文献求助10
23秒前
23秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3871122
求助须知:如何正确求助?哪些是违规求助? 3413294
关于积分的说明 10683711
捐赠科研通 3137724
什么是DOI,文献DOI怎么找? 1731163
邀请新用户注册赠送积分活动 834633
科研通“疑难数据库(出版商)”最低求助积分说明 781250