Generalizability and Bias in a Deep Learning Pediatric Bone Age Prediction Model Using Hand Radiographs

概化理论 医学 骨龄 射线照相术 方差分析 考试(生物学) 统计 外科 内科学 数学 生物 古生物学
作者
Elham Beheshtian,Kristin Putman,Samantha M. Santomartino,Vishwa S. Parekh,Paul H. Yi
出处
期刊:Radiology [Radiological Society of North America]
卷期号:306 (2) 被引量:24
标识
DOI:10.1148/radiol.220505
摘要

Background Although deep learning (DL) models have demonstrated expert-level ability for pediatric bone age prediction, they have shown poor generalizability and bias in other use cases. Purpose To quantify generalizability and bias in a bone age DL model measured by performance on external versus internal test sets and performance differences between different demographic groups, respectively. Materials and Methods The winning DL model of the 2017 RSNA Pediatric Bone Age Challenge was retrospectively evaluated and trained on 12 611 pediatric hand radiographs from two U.S. hospitals. The DL model was tested from September 2021 to December 2021 on an internal validation set and an external test set of pediatric hand radiographs with diverse demographic representation. Images reporting ground-truth bone age were included for study. Mean absolute difference (MAD) between ground-truth bone age and the model prediction bone age was calculated for each set. Generalizability was evaluated by comparing MAD between internal and external evaluation sets with use of t tests. Bias was evaluated by comparing MAD and clinically significant error rate (rate of errors changing the clinical diagnosis) between demographic groups with use of t tests or analysis of variance and χ2 tests, respectively (statistically significant difference defined as P < .05). Results The internal validation set had images from 1425 individuals (773 boys), and the external test set had images from 1202 individuals (mean age, 133 months ± 60 [SD]; 614 boys). The bone age model generalized well to the external test set, with no difference in MAD (6.8 months in the validation set vs 6.9 months in the external set; P = .64). Model predictions would have led to clinically significant errors in 194 of 1202 images (16%) in the external test set. The MAD was greater for girls than boys in the internal validation set (P = .01) and in the subcategories of age and Tanner stage in the external test set (P < .001 for both). Conclusion A deep learning (DL) bone age model generalized well to an external test set, although clinically significant sex-, age-, and sexual maturity-based biases in DL bone age were identified. © RSNA, 2022 Online supplemental material is available for this article See also the editorial by Larson in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
语卿发布了新的文献求助10
1秒前
河中医朵花完成签到,获得积分10
3秒前
7秒前
坚定的海露完成签到,获得积分10
10秒前
源缘完成签到 ,获得积分10
12秒前
敏感的咖啡豆完成签到 ,获得积分10
12秒前
13秒前
CipherSage应助kwb采纳,获得10
16秒前
甄世凡发布了新的文献求助10
17秒前
jiejie完成签到 ,获得积分10
19秒前
平淡小白菜完成签到,获得积分10
19秒前
21秒前
贺英完成签到,获得积分10
22秒前
妮妮发布了新的文献求助10
22秒前
甜甜戎完成签到,获得积分10
23秒前
双双完成签到,获得积分10
24秒前
25秒前
陶醉的又夏完成签到 ,获得积分10
25秒前
啊哈完成签到,获得积分10
26秒前
王壮壮完成签到,获得积分10
26秒前
26秒前
kwb完成签到,获得积分20
26秒前
yy完成签到 ,获得积分10
26秒前
自由从筠完成签到,获得积分10
27秒前
27秒前
kwb发布了新的文献求助10
29秒前
Hello应助163采纳,获得10
30秒前
博修发布了新的文献求助10
30秒前
30秒前
上官若男应助科研通管家采纳,获得10
30秒前
慕青应助科研通管家采纳,获得10
30秒前
自由从筠发布了新的文献求助10
30秒前
ZhouYW应助科研通管家采纳,获得20
30秒前
Lucas应助科研通管家采纳,获得10
31秒前
cdercder应助科研通管家采纳,获得10
31秒前
华仔应助科研通管家采纳,获得10
31秒前
31秒前
Orange应助科研通管家采纳,获得10
31秒前
小奋青完成签到 ,获得积分10
33秒前
远方完成签到,获得积分10
33秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799078
求助须知:如何正确求助?哪些是违规求助? 3344805
关于积分的说明 10321507
捐赠科研通 3061233
什么是DOI,文献DOI怎么找? 1680100
邀请新用户注册赠送积分活动 806899
科研通“疑难数据库(出版商)”最低求助积分说明 763445