MAD-YOLO: A quantitative detection algorithm for dense small-scale marine benthos

计算机科学 特征(语言学) 比例(比率) 水下 底栖生物 特征提取 模式识别(心理学) 算法 数据挖掘 人工智能 生态学 地理 语言学 地图学 底栖区 生物 哲学 考古
作者
Xianchong Xu,Yong Liu,Lu Lyu,Peng Yan,Jianyi Zhang
出处
期刊:Ecological Informatics [Elsevier BV]
卷期号:75: 102022-102022 被引量:24
标识
DOI:10.1016/j.ecoinf.2023.102022
摘要

Marine biological resources are abundant, and the reasonable development, research and protection of marine biological resources are of great significance to marine ecological health and economic development. At present, underwater object quantitative detection plays a very important role in marine biological science research, marine species richness survey, and rare species conservation. However, the problems of a large amount of noise in the underwater environment, small object scale, dense biological distribution, and occlusion all increase the detection difficulty. In this paper, a detection algorithm MAD-YOLO (Multiscale Feature Extraction and Attention Feature Fusion Reinforced YOLO for Marine Benthos Detection) is proposed, which is based on improved YOLOv5 is proposed to solve the above problems. To improve the adaptability of the network to the underwater environment, VOVDarkNet is designed as the feature extraction backbone. It uses the intermediate features with different receptive fields to reinforce the ability to extract feature. AFC-PAN is proposed as the feature fusion network so that the network can learn correct feature information and location information of objects at various scales, improving the network's ability to perceive small objects. Label assignment strategy SimOTA and decoupled head are introduced to help the model better handles occlusion and dense distribution problems. Experiments show the MAD-YOLO algorithm increases mAP0.5:0.95 on the URPC2020 dataset from 49.8% to 53.4% compared to the original YOLOv5. Moreover, the advantages of the model are visualized and analyzed by the method of controlling variables in the experimental part. The experiments show that MAD-YOLO is suitable for detecting blurred, dense, and small-scale objects. The model performs well in marine benthos detection tasks and can effectively promote marine life science research and marine engineering implementation. The source code is publicly available at https://github.com/JoeNan1/MAD-YOLO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是中国人完成签到,获得积分10
刚刚
小笼包完成签到,获得积分20
2秒前
zz完成签到 ,获得积分10
3秒前
机读卡发布了新的文献求助30
5秒前
852应助kk采纳,获得10
8秒前
NexusExplorer应助yn采纳,获得10
9秒前
study完成签到,获得积分10
10秒前
13秒前
16秒前
17秒前
小二郎应助xiao金采纳,获得10
18秒前
21秒前
24秒前
田様应助CYY采纳,获得10
25秒前
yn发布了新的文献求助10
26秒前
survivaluu完成签到,获得积分10
27秒前
薄薄荷发布了新的文献求助30
28秒前
摸鱼主编magazine完成签到,获得积分10
31秒前
甜甜完成签到,获得积分10
31秒前
大模型应助从容谷菱采纳,获得10
33秒前
survivaluu发布了新的文献求助10
37秒前
37秒前
Kun发布了新的文献求助10
38秒前
41秒前
爱吃辣的彤大宝完成签到,获得积分10
44秒前
47秒前
杨zhen发布了新的文献求助30
48秒前
桐桐应助Kun采纳,获得10
48秒前
烟花应助Kun采纳,获得10
48秒前
48秒前
lesyeuxdexx完成签到 ,获得积分10
48秒前
50秒前
wuw完成签到,获得积分20
50秒前
51秒前
xiao金发布了新的文献求助10
52秒前
奔腾小马发布了新的文献求助10
53秒前
俭朴梦菡发布了新的文献求助10
55秒前
kk发布了新的文献求助10
55秒前
57秒前
巴拉巴拉巴拉拉应助wuw采纳,获得10
59秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780364
求助须知:如何正确求助?哪些是违规求助? 3325733
关于积分的说明 10224077
捐赠科研通 3040823
什么是DOI,文献DOI怎么找? 1669052
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758649