Suppressing the Dynamic Oxygen Evolution of Sodium Layered Cathodes through Synergistic Surface Dielectric Polarization and Bulk Site‐Selective Co‐Doping

材料科学 阴极 氧气 析氧 极化(电化学) 电介质 兴奋剂 化学工程 电极 纳米技术 无机化学 光电子学 电化学 化学 工程类 物理化学 有机化学 冶金
作者
Xia Xiao,Tong Liu,Chen Cheng,Hongtai Li,Tianran Yan,Haolv Hu,Yihao Shen,Huanxin Ju,Ting‐Shan Chan,Zhenwei Wu,Yuefeng Su,Yu Zhao,Duanyun Cao,Liang Zhang
出处
期刊:Advanced Materials [Wiley]
卷期号:35 (8) 被引量:60
标识
DOI:10.1002/adma.202209556
摘要

Utilizing anionic redox activity within layered oxide cathode materials represents a transformational avenue for enabling high-energy-density rechargeable batteries. However, the anionic oxygen redox reaction is often accompanied with irreversible dynamic oxygen evolution, leading to unfavorable structural distortion and thus severe voltage decay and rapid capacity fading. Herein, it is proposed and validated that the dynamic oxygen evolution can be effectively suppressed through the synergistic surface CaTiO3 dielectric coating and bulk site-selective Ca/Ti co-doping for layered Na2/3 Ni1/3 Mn2/3 O2 . The surface dielectric coating layer not only suppresses the surface oxygen release but more importantly inhibits the bulk oxygen migration by creating a reverse electric field through dielectric polarization. Meanwhile, the site-selective doping of oxygen-affinity Ca into Na layers and Ti into transition metal layers effectively stabilizes the bulk oxygen through modulating the O 2p band center and the oxygen migration barrier. Such a strategy also leads to a reversible structural evolution with a low volume change because of the enhanced structural integrality and improved oxygen rigidity. Because of these synergistic advantages, the designed electrode exhibits greatly suppressed voltage decay and capacity fading upon long-term cycling. This study affords a promising strategy for regulating the dynamic oxygen evolution to achieve high-capacity layered cathode materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QI发布了新的文献求助10
1秒前
maomao1986完成签到,获得积分10
1秒前
黄海完成签到,获得积分10
2秒前
wisdom应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
笨笨行云发布了新的文献求助10
2秒前
传统的襄应助科研通管家采纳,获得10
2秒前
yar应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
蛇從革应助科研通管家采纳,获得30
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
2秒前
鸣笛应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
华仔应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
鸣笛应助科研通管家采纳,获得10
2秒前
2秒前
汉堡包应助科研通管家采纳,获得10
3秒前
彩色蓉完成签到 ,获得积分10
3秒前
xl完成签到,获得积分20
5秒前
5秒前
高高的采蓝完成签到 ,获得积分10
5秒前
6秒前
感谢有你完成签到 ,获得积分10
7秒前
代芙应助Aaron采纳,获得10
8秒前
畅快山兰发布了新的文献求助10
8秒前
123完成签到,获得积分20
9秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4087145
求助须知:如何正确求助?哪些是违规求助? 3626008
关于积分的说明 11498334
捐赠科研通 3339255
什么是DOI,文献DOI怎么找? 1835824
邀请新用户注册赠送积分活动 904033
科研通“疑难数据库(出版商)”最低求助积分说明 822032