Suppressing the Dynamic Oxygen Evolution of Sodium Layered Cathodes through Synergistic Surface Dielectric Polarization and Bulk Site‐Selective Co‐Doping

材料科学 阴极 氧气 析氧 极化(电化学) 电介质 兴奋剂 化学工程 电极 纳米技术 无机化学 光电子学 电化学 化学 工程类 物理化学 有机化学 冶金
作者
Xiao Xia,Tong Liu,Chen Cheng,Hongtai Li,Tianran Yan,Haolv Hu,Yihao Shen,Huanxin Ju,Ting‐Shan Chan,Zhenwei Wu,Yuefeng Su,Yu Zhao,Duanyun Cao,Liang Zhang
出处
期刊:Advanced Materials [Wiley]
卷期号:35 (8) 被引量:73
标识
DOI:10.1002/adma.202209556
摘要

Utilizing anionic redox activity within layered oxide cathode materials represents a transformational avenue for enabling high-energy-density rechargeable batteries. However, the anionic oxygen redox reaction is often accompanied with irreversible dynamic oxygen evolution, leading to unfavorable structural distortion and thus severe voltage decay and rapid capacity fading. Herein, it is proposed and validated that the dynamic oxygen evolution can be effectively suppressed through the synergistic surface CaTiO3 dielectric coating and bulk site-selective Ca/Ti co-doping for layered Na2/3 Ni1/3 Mn2/3 O2 . The surface dielectric coating layer not only suppresses the surface oxygen release but more importantly inhibits the bulk oxygen migration by creating a reverse electric field through dielectric polarization. Meanwhile, the site-selective doping of oxygen-affinity Ca into Na layers and Ti into transition metal layers effectively stabilizes the bulk oxygen through modulating the O 2p band center and the oxygen migration barrier. Such a strategy also leads to a reversible structural evolution with a low volume change because of the enhanced structural integrality and improved oxygen rigidity. Because of these synergistic advantages, the designed electrode exhibits greatly suppressed voltage decay and capacity fading upon long-term cycling. This study affords a promising strategy for regulating the dynamic oxygen evolution to achieve high-capacity layered cathode materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xinxxx应助可可采纳,获得10
1秒前
swallow发布了新的文献求助10
1秒前
不爱科研完成签到,获得积分10
1秒前
lulu发布了新的文献求助10
2秒前
科目三应助ForestEcho采纳,获得10
4秒前
xyyj_89完成签到,获得积分10
5秒前
酷波er应助gjm采纳,获得10
7秒前
zc完成签到 ,获得积分10
8秒前
风趣的新竹完成签到,获得积分10
9秒前
10秒前
10秒前
西扬完成签到 ,获得积分10
11秒前
12秒前
13秒前
14秒前
16秒前
不爱科研发布了新的文献求助10
16秒前
17秒前
拉瓦锡不爱化学完成签到,获得积分10
17秒前
18秒前
18秒前
BAI_1发布了新的文献求助30
18秒前
19秒前
精明觅荷完成签到,获得积分10
19秒前
机灵班应助YYR采纳,获得10
20秒前
21秒前
21秒前
宵夜发布了新的文献求助10
21秒前
22秒前
寰宇完成签到,获得积分10
23秒前
乐乐应助Donna采纳,获得10
23秒前
三石发布了新的文献求助10
23秒前
23秒前
舒服的醉卉完成签到 ,获得积分10
25秒前
Patrick发布了新的文献求助10
27秒前
李柏桐发布了新的文献求助10
28秒前
lulu完成签到,获得积分10
29秒前
31秒前
Knight完成签到,获得积分10
32秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299184
求助须知:如何正确求助?哪些是违规求助? 4447424
关于积分的说明 13842647
捐赠科研通 4333048
什么是DOI,文献DOI怎么找? 2378492
邀请新用户注册赠送积分活动 1373800
关于科研通互助平台的介绍 1339331