Interpretable deep learning model to predict the molecular classification of endometrial cancer from haematoxylin and eosin-stained whole-slide images: a combined analysis of the PORTEC randomised trials and clinical cohorts

子宫内膜癌 医学 队列 接收机工作特性 人工智能 苏木精 肿瘤科 癌症 内科学 放射科 计算机科学 免疫组织化学
作者
Sarah Fremond,Sonali Andani,Jurriaan Barkey Wolf,Jouke Dijkstra,Sinéad Melsbach,Jan J. Jobsen,Mariël Brinkhuis,Suzan Roothaan,Ina J. Jürgenliemk-Schulz,Ludy Lutgens,Remi A. Nout,Elzbieta M. van der Steen‐Banasik,Stephanie M. de Boer,Melanie Powell,Naveena Singh,Linda Mileshkin,Helen Mackay,Alexandra Léary,Hans W. Nijman,Vincent T.H.B.M. Smit
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:5 (2): e71-e82 被引量:60
标识
DOI:10.1016/s2589-7500(22)00210-2
摘要

Endometrial cancer can be molecularly classified into POLEmut, mismatch repair deficient (MMRd), p53 abnormal (p53abn), and no specific molecular profile (NSMP) subgroups. We aimed to develop an interpretable deep learning pipeline for whole-slide-image-based prediction of the four molecular classes in endometrial cancer (im4MEC), to identify morpho-molecular correlates, and to refine prognostication.This combined analysis included diagnostic haematoxylin and eosin-stained slides and molecular and clinicopathological data from 2028 patients with intermediate-to-high-risk endometrial cancer from the PORTEC-1 (n=466), PORTEC-2 (n=375), and PORTEC-3 (n=393) randomised trials and the TransPORTEC pilot study (n=110), the Medisch Spectrum Twente cohort (n=242), a case series of patients with POLEmut endometrial cancer in the Leiden Endometrial Cancer Repository (n=47), and The Cancer Genome Atlas-Uterine Corpus Endometrial Carcinoma cohort (n=395). PORTEC-3 was held out as an independent test set and a four-fold cross validation was performed. Performance was measured with the macro and class-wise area under the receiver operating characteristic curve (AUROC). Whole-slide images were segmented into tiles of 360 μm resized to 224 × 224 pixels. im4MEC was trained to learn tile-level morphological features with self-supervised learning and to molecularly classify whole-slide images with an attention mechanism. The top 20 tiles with the highest attention scores were reviewed to identify morpho-molecular correlates. Predictions of a nuclear classification deep learning model serve to derive interpretable morphological features. We analysed 5-year recurrence-free survival and explored prognostic refinement by molecular class using the Kaplan-Meier method.im4MEC attained macro-average AUROCs of 0·874 (95% CI 0·856-0·893) on four-fold cross-validation and 0·876 on the independent test set. The class-wise AUROCs were 0·849 for POLEmut (n=51), 0·844 for MMRd (n=134), 0·883 for NSMP (n=120), and 0·928 for p53abn (n=88). POLEmut and MMRd tiles had a high density of lymphocytes, p53abn tiles had strong nuclear atypia, and the morphology of POLEmut and MMRd endometrial cancer overlapped. im4MEC highlighted a low tumour-to-stroma ratio as a potentially novel characteristic feature of the NSMP class. 5-year recurrence-free survival was significantly different between im4MEC predicted molecular classes in PORTEC-3 (log-rank p<0·0001). The ten patients with aggressive p53abn endometrial cancer that was predicted as MMRd showed inflammatory morphology and appeared to have a better prognosis than patients with correctly predicted p53abn endometrial cancer (p=0·30). The four patients with NSMP endometrial cancer that was predicted as p53abn showed higher nuclear atypia and appeared to have a worse prognosis than patients with correctly predicted NSMP (p=0·13). Patients with MMRd endometrial cancer predicted as POLEmut had an excellent prognosis, as do those with true POLEmut endometrial cancer.We present the first interpretable deep learning model, im4MEC, for haematoxylin and eosin-based prediction of molecular endometrial cancer classification. im4MEC robustly identified morpho-molecular correlates and could enable further prognostic refinement of patients with endometrial cancer.The Hanarth Foundation, the Promedica Foundation, and the Swiss Federal Institutes of Technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
彪壮的绮烟完成签到,获得积分10
2秒前
4秒前
5秒前
李健的小迷弟应助MILL采纳,获得10
7秒前
7秒前
7秒前
7秒前
轻松的一刀完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
9秒前
9秒前
10秒前
12秒前
Julia发布了新的文献求助10
12秒前
13秒前
琪624发布了新的文献求助10
13秒前
历史雨完成签到,获得积分10
14秒前
15秒前
FFFFF发布了新的文献求助10
15秒前
梁政研发布了新的文献求助10
16秒前
20秒前
chenyunxia发布了新的文献求助30
20秒前
bkagyin应助FFFFF采纳,获得10
21秒前
22秒前
23秒前
ataybabdallah完成签到,获得积分10
25秒前
脑洞疼应助无限的依波采纳,获得10
26秒前
27秒前
田小姐发布了新的文献求助10
27秒前
Julia完成签到,获得积分20
29秒前
meimei发布了新的文献求助10
29秒前
31秒前
刘金金发布了新的文献求助10
32秒前
sss完成签到,获得积分10
34秒前
慢悠悠报表完成签到,获得积分10
35秒前
AX完成签到,获得积分10
35秒前
cfffff发布了新的文献求助10
37秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787285
求助须知:如何正确求助?哪些是违规求助? 3332896
关于积分的说明 10258130
捐赠科研通 3048309
什么是DOI,文献DOI怎么找? 1673086
邀请新用户注册赠送积分活动 801616
科研通“疑难数据库(出版商)”最低求助积分说明 760303