Interpretable deep learning model to predict the molecular classification of endometrial cancer from haematoxylin and eosin-stained whole-slide images: a combined analysis of the PORTEC randomised trials and clinical cohorts

子宫内膜癌 医学 队列 接收机工作特性 人工智能 苏木精 肿瘤科 癌症 内科学 放射科 计算机科学 免疫组织化学
作者
Sarah Fremond,Sonali Andani,Jurriaan Barkey Wolf,Jouke Dijkstra,Sinéad Melsbach,Jan J. Jobsen,Mariël Brinkhuis,Suzan Roothaan,Ina J. Jürgenliemk-Schulz,Ludy Lutgens,Remi A. Nout,Elzbieta M. van der Steen‐Banasik,Stephanie M. de Boer,Melanie Powell,Naveena Singh,Linda Mileshkin,Helen Mackay,Alexandra Léary,Hans W. Nijman,Vincent T.H.B.M. Smit
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:5 (2): e71-e82 被引量:79
标识
DOI:10.1016/s2589-7500(22)00210-2
摘要

Endometrial cancer can be molecularly classified into POLEmut, mismatch repair deficient (MMRd), p53 abnormal (p53abn), and no specific molecular profile (NSMP) subgroups. We aimed to develop an interpretable deep learning pipeline for whole-slide-image-based prediction of the four molecular classes in endometrial cancer (im4MEC), to identify morpho-molecular correlates, and to refine prognostication.This combined analysis included diagnostic haematoxylin and eosin-stained slides and molecular and clinicopathological data from 2028 patients with intermediate-to-high-risk endometrial cancer from the PORTEC-1 (n=466), PORTEC-2 (n=375), and PORTEC-3 (n=393) randomised trials and the TransPORTEC pilot study (n=110), the Medisch Spectrum Twente cohort (n=242), a case series of patients with POLEmut endometrial cancer in the Leiden Endometrial Cancer Repository (n=47), and The Cancer Genome Atlas-Uterine Corpus Endometrial Carcinoma cohort (n=395). PORTEC-3 was held out as an independent test set and a four-fold cross validation was performed. Performance was measured with the macro and class-wise area under the receiver operating characteristic curve (AUROC). Whole-slide images were segmented into tiles of 360 μm resized to 224 × 224 pixels. im4MEC was trained to learn tile-level morphological features with self-supervised learning and to molecularly classify whole-slide images with an attention mechanism. The top 20 tiles with the highest attention scores were reviewed to identify morpho-molecular correlates. Predictions of a nuclear classification deep learning model serve to derive interpretable morphological features. We analysed 5-year recurrence-free survival and explored prognostic refinement by molecular class using the Kaplan-Meier method.im4MEC attained macro-average AUROCs of 0·874 (95% CI 0·856-0·893) on four-fold cross-validation and 0·876 on the independent test set. The class-wise AUROCs were 0·849 for POLEmut (n=51), 0·844 for MMRd (n=134), 0·883 for NSMP (n=120), and 0·928 for p53abn (n=88). POLEmut and MMRd tiles had a high density of lymphocytes, p53abn tiles had strong nuclear atypia, and the morphology of POLEmut and MMRd endometrial cancer overlapped. im4MEC highlighted a low tumour-to-stroma ratio as a potentially novel characteristic feature of the NSMP class. 5-year recurrence-free survival was significantly different between im4MEC predicted molecular classes in PORTEC-3 (log-rank p<0·0001). The ten patients with aggressive p53abn endometrial cancer that was predicted as MMRd showed inflammatory morphology and appeared to have a better prognosis than patients with correctly predicted p53abn endometrial cancer (p=0·30). The four patients with NSMP endometrial cancer that was predicted as p53abn showed higher nuclear atypia and appeared to have a worse prognosis than patients with correctly predicted NSMP (p=0·13). Patients with MMRd endometrial cancer predicted as POLEmut had an excellent prognosis, as do those with true POLEmut endometrial cancer.We present the first interpretable deep learning model, im4MEC, for haematoxylin and eosin-based prediction of molecular endometrial cancer classification. im4MEC robustly identified morpho-molecular correlates and could enable further prognostic refinement of patients with endometrial cancer.The Hanarth Foundation, the Promedica Foundation, and the Swiss Federal Institutes of Technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺利的鱼完成签到,获得积分10
1秒前
1秒前
GRDGRDGRD完成签到,获得积分10
2秒前
3秒前
刘标发布了新的文献求助10
3秒前
Akim应助乖猫要努力采纳,获得10
3秒前
4秒前
4秒前
4秒前
大海完成签到,获得积分10
4秒前
yangdoudou应助科研通管家采纳,获得10
5秒前
yangdoudou应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
核桃应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
寒冬完成签到,获得积分10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得30
6秒前
sayshh完成签到 ,获得积分10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
AAA完成签到,获得积分10
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得30
6秒前
清栀应助科研通管家采纳,获得10
6秒前
6秒前
Owen应助科研通管家采纳,获得10
7秒前
7秒前
zzz完成签到,获得积分10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
一指流沙发布了新的文献求助10
7秒前
田様应助科研通管家采纳,获得10
7秒前
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4883091
求助须知:如何正确求助?哪些是违规求助? 4168697
关于积分的说明 12934922
捐赠科研通 3929044
什么是DOI,文献DOI怎么找? 2155910
邀请新用户注册赠送积分活动 1174265
关于科研通互助平台的介绍 1079036