Interpretable deep learning model to predict the molecular classification of endometrial cancer from haematoxylin and eosin-stained whole-slide images: a combined analysis of the PORTEC randomised trials and clinical cohorts

子宫内膜癌 医学 队列 接收机工作特性 人工智能 苏木精 肿瘤科 癌症 内科学 放射科 计算机科学 免疫组织化学
作者
Sarah Fremond,Sonali Andani,Jurriaan Barkey Wolf,Jouke Dijkstra,Sinéad Melsbach,Jan J. Jobsen,Mariël Brinkhuis,Suzan Roothaan,Ina J. Jürgenliemk-Schulz,Ludy Lutgens,Remi A. Nout,Elzbieta M. van der Steen‐Banasik,Stephanie M. de Boer,Melanie Powell,Naveena Singh,Linda Mileshkin,Helen Mackay,Alexandra Léary,Hans W. Nijman,Vincent T.H.B.M. Smit
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:5 (2): e71-e82 被引量:64
标识
DOI:10.1016/s2589-7500(22)00210-2
摘要

Endometrial cancer can be molecularly classified into POLEmut, mismatch repair deficient (MMRd), p53 abnormal (p53abn), and no specific molecular profile (NSMP) subgroups. We aimed to develop an interpretable deep learning pipeline for whole-slide-image-based prediction of the four molecular classes in endometrial cancer (im4MEC), to identify morpho-molecular correlates, and to refine prognostication.This combined analysis included diagnostic haematoxylin and eosin-stained slides and molecular and clinicopathological data from 2028 patients with intermediate-to-high-risk endometrial cancer from the PORTEC-1 (n=466), PORTEC-2 (n=375), and PORTEC-3 (n=393) randomised trials and the TransPORTEC pilot study (n=110), the Medisch Spectrum Twente cohort (n=242), a case series of patients with POLEmut endometrial cancer in the Leiden Endometrial Cancer Repository (n=47), and The Cancer Genome Atlas-Uterine Corpus Endometrial Carcinoma cohort (n=395). PORTEC-3 was held out as an independent test set and a four-fold cross validation was performed. Performance was measured with the macro and class-wise area under the receiver operating characteristic curve (AUROC). Whole-slide images were segmented into tiles of 360 μm resized to 224 × 224 pixels. im4MEC was trained to learn tile-level morphological features with self-supervised learning and to molecularly classify whole-slide images with an attention mechanism. The top 20 tiles with the highest attention scores were reviewed to identify morpho-molecular correlates. Predictions of a nuclear classification deep learning model serve to derive interpretable morphological features. We analysed 5-year recurrence-free survival and explored prognostic refinement by molecular class using the Kaplan-Meier method.im4MEC attained macro-average AUROCs of 0·874 (95% CI 0·856-0·893) on four-fold cross-validation and 0·876 on the independent test set. The class-wise AUROCs were 0·849 for POLEmut (n=51), 0·844 for MMRd (n=134), 0·883 for NSMP (n=120), and 0·928 for p53abn (n=88). POLEmut and MMRd tiles had a high density of lymphocytes, p53abn tiles had strong nuclear atypia, and the morphology of POLEmut and MMRd endometrial cancer overlapped. im4MEC highlighted a low tumour-to-stroma ratio as a potentially novel characteristic feature of the NSMP class. 5-year recurrence-free survival was significantly different between im4MEC predicted molecular classes in PORTEC-3 (log-rank p<0·0001). The ten patients with aggressive p53abn endometrial cancer that was predicted as MMRd showed inflammatory morphology and appeared to have a better prognosis than patients with correctly predicted p53abn endometrial cancer (p=0·30). The four patients with NSMP endometrial cancer that was predicted as p53abn showed higher nuclear atypia and appeared to have a worse prognosis than patients with correctly predicted NSMP (p=0·13). Patients with MMRd endometrial cancer predicted as POLEmut had an excellent prognosis, as do those with true POLEmut endometrial cancer.We present the first interpretable deep learning model, im4MEC, for haematoxylin and eosin-based prediction of molecular endometrial cancer classification. im4MEC robustly identified morpho-molecular correlates and could enable further prognostic refinement of patients with endometrial cancer.The Hanarth Foundation, the Promedica Foundation, and the Swiss Federal Institutes of Technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lululala发布了新的文献求助10
2秒前
Mia发布了新的文献求助10
2秒前
对不棋发布了新的文献求助30
4秒前
lc发布了新的文献求助10
6秒前
FashionBoy应助随缘采纳,获得10
6秒前
xinxinxue完成签到,获得积分10
8秒前
小马甲应助lululala采纳,获得10
9秒前
Mia关闭了Mia文献求助
11秒前
稚于发布了新的文献求助10
11秒前
11秒前
酷波er应助张一采纳,获得10
11秒前
明灯三千完成签到,获得积分10
12秒前
科目三应助LFFF999采纳,获得10
13秒前
Akim应助yqc采纳,获得10
14秒前
豆腐宣誓发布了新的文献求助30
15秒前
17秒前
张一完成签到,获得积分10
20秒前
随缘发布了新的文献求助10
20秒前
21秒前
笨笨如之完成签到 ,获得积分10
26秒前
儒雅的谷兰完成签到 ,获得积分10
26秒前
张一发布了新的文献求助10
28秒前
28秒前
爱科学完成签到 ,获得积分10
29秒前
32秒前
生动路人应助闫敬蓉采纳,获得10
34秒前
Transition发布了新的文献求助10
35秒前
37秒前
jszhoucl发布了新的文献求助10
38秒前
慕青应助shiwo110采纳,获得10
40秒前
加贝发布了新的文献求助10
43秒前
生动路人应助南宫书瑶采纳,获得30
48秒前
ding应助Transition采纳,获得10
51秒前
CodeCraft应助我不吃葱采纳,获得10
53秒前
54秒前
jszhoucl完成签到,获得积分20
54秒前
Rondab给Francois的求助进行了留言
55秒前
55秒前
anyig完成签到,获得积分10
56秒前
56秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993068
求助须知:如何正确求助?哪些是违规求助? 3533981
关于积分的说明 11264261
捐赠科研通 3273665
什么是DOI,文献DOI怎么找? 1806134
邀请新用户注册赠送积分活动 883003
科研通“疑难数据库(出版商)”最低求助积分说明 809644