碳化作用
盐(化学)
废物管理
化学
碳化
固碳
铵
化学工程
吸附剂
碳酸铵
碳酸钙
无机化学
二氧化碳
工程类
有机化学
吸附
作者
Endong Miao,Yi Du,Xufan Zheng,Xuguang Zhang,Zhuo Xiong,Yongchun Zhao,Junying Zhang
标识
DOI:10.1016/j.seppur.2023.123103
摘要
In this study, we investigated CO2 mineral sequestration by municipal solid waste incineration fly ash (MSWI-FA) in both pure water and ammonium salt solutions [NH4Cl, (NH4)2SO4 and CH3COONH4]. The introduction of NH4+ significantly promoted the solid–liquid mass transfer of the active calcium on the MSWI-FA particles and the generation of free ammonia in the solution, which enhanced the carbonation kinetics and crystallization of the calcium carbonate product. Changes to the mineralogy, morphology, and surface properties of the MSWI-FA particles before and after carbonation confirmed the reaction mechanism. A novel kinetic model based on the two-film theory was developed to evaluate the mass transfer and chemical reaction of heterogeneous carbonation in both pure water and ammonium salt solutions. To optimize the carbonation rate and efficiency, the complex effects of various operating parameters on the CO2 sequestration characteristics were systematically investigated. Maximum carbonation kinetics was achieved at 60 °C, an ammonium salt concentration of 1.0 mol/L, and a gas flow rate of 1.0 L/min, resulting in a carbonation efficiency and CO2 sequestration capacity of 78.49 % and 0.236 g CO2/g MSWI-FA, respectively. A comparison of the present results with those of other studies suggests that direct aqueous carbonation in ammonium salt solutions is feasible owing to its higher carbonation kinetics and CO2 sequestration capacity.
科研通智能强力驱动
Strongly Powered by AbleSci AI