Bearing Fault Detection and Classification Based on Vibration Signal Analysis and ANFIS Classifier

振动 希尔伯特-黄变换 特征提取 模式识别(心理学) 支持向量机 方位(导航) 熵(时间箭头) 人工智能 分类器(UML) 计算机科学 状态监测 工程类 近似熵 断层(地质) 控制理论(社会学) 计算机视觉 声学 控制(管理) 地震学 地质学 物理 电气工程 滤波器(信号处理) 量子力学
作者
Issam Attoui,Nadir Boutasseta,Nadir Fergani,Brahim Oudjani,Mohammed Salah Bouakkaz,Ahmed Bouraiou
标识
DOI:10.1109/ssd54932.2022.9955711
摘要

Automatic Bearing defects are able to lead to deterioration of the operating conditions of the rotating machine, how to extract the most informative characteristics of the fault from the vibration signals and classify the bearing fault have become a critical problem and addressing this problem is an imperative for ensuring the safe operation of the rotating machines. This paper proposes a hybrid method that uses the Empirical Mode Decomposition (EMD) technique for the extraction of the most informative characteristics of the bearing faults using calculated energy and entropy and the ANFIS algorithm as an intelligent classifier for rolling bearings fault classification. Firstly, the non-stationary features of the vibration signal are extracted by applying the EMD that is applied for decomposing the measured signal into a fixed amount of stationary intrinsic mode functions (IMFs), and then the energy and entropy of the IMFs are considered to form the parameters vector used in the classification stage of the proposed procedure. In fact, the parameters vector is first used as an input for the ANFIS classifier, but after choosing from it the best extracted features adapted to bearing fault diagnosis through a wrapper algorithm. The proposed method is tested on experiment using real bearing vibration signals for different health conditions (bearing with inner-race, out-race and ball faults) by considering 12 fault classes that are determined according to fault type and severity. The results approve that the proposed technique reached a good classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
平淡惋清发布了新的文献求助30
刚刚
慕青应助HDJ采纳,获得10
2秒前
3秒前
5秒前
ddd完成签到 ,获得积分10
6秒前
小巧老鼠完成签到,获得积分10
6秒前
6秒前
6秒前
8秒前
8秒前
酷波er应助idynamics采纳,获得10
8秒前
好好好完成签到,获得积分20
10秒前
大个应助RichieXU采纳,获得10
10秒前
HE完成签到,获得积分20
10秒前
Akim应助CDI和LIB采纳,获得10
10秒前
11秒前
平淡惋清完成签到,获得积分20
11秒前
12秒前
元宝团子完成签到,获得积分10
12秒前
浩洁发布了新的文献求助10
13秒前
超carry的小廖给超carry的小廖的求助进行了留言
14秒前
16秒前
wzx发布了新的文献求助10
17秒前
tooty发布了新的文献求助10
19秒前
sherry完成签到,获得积分20
19秒前
科研通AI2S应助阔达的雁凡采纳,获得10
20秒前
gyf完成签到,获得积分20
21秒前
21秒前
RichieXU发布了新的文献求助10
24秒前
葳蕤苍生完成签到,获得积分10
24秒前
仔仔在完成签到,获得积分10
24秒前
未改完成签到,获得积分10
26秒前
英俊的铭应助ustinian采纳,获得10
29秒前
31秒前
32秒前
32秒前
33秒前
CodeCraft应助Harlotte采纳,获得10
35秒前
tooty完成签到,获得积分10
36秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798051
求助须知:如何正确求助?哪些是违规求助? 3343486
关于积分的说明 10316305
捐赠科研通 3060189
什么是DOI,文献DOI怎么找? 1679400
邀请新用户注册赠送积分活动 806560
科研通“疑难数据库(出版商)”最低求助积分说明 763221