已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

SNIS: A Signal Noise Separation-Based Network for Post-Processed Image Forgery Detection

稳健性(进化) 计算机科学 人工智能 计算机视觉 噪音(视频) 图像处理 模式识别(心理学) 信号处理 特征提取 卷积(计算机科学) 图像(数学) 人工神经网络 数字信号处理 生物化学 基因 计算机硬件 化学
作者
Jiaxin Chen,Xin Liao,Wei Wang,Zhenxing Qian,Zheng Qin,Yaonan Wang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (2): 935-951 被引量:33
标识
DOI:10.1109/tcsvt.2022.3204753
摘要

Image forgery detection has aroused widespread research interest in both academia and industry because of its potential security threats. Existing forgery detection methods achieve excellent tampered regions localization performance when forged images have not undergone post-processing, which can be detected by observing changes in the statistical features of images. However, forged images may be carefully post-processed to conceal forgery boundaries in a particular scenario. It becomes tough challenging to these methods. In this paper, we perform an analogous analysis between image forgery detection and blind signal separation, and formulate the post-processed image forgery detection problem into a signal noise separation problem. We also propose a signal noise separation-based (SNIS) network to solve the problem of detecting post-processed image forgery. Specifically, we first adopt the signal noise separation module to separate tampered region from the complex background region with post-processing noise, which weakens or even eliminates the negative impact of post-processing on forgery detection. Then, the multi-scale feature learning module uses a parallel atrous convolution architecture to learn high-level global features from multiple perspectives. Besides, a feature fusion module is utilized to enhance the discriminability of tampered regions and real regions by strengthening the boundary information. Finally, the prediction module is designed to predict the tampered region and classify the type of tampering operation. Extensive experiments show that the proposed SNIS is not only effective for forgery detection on forged images without post-processing, but also promising in robustness against multiple post-processing attacks. Furthermore, SNIS is robust in detecting forged images from unknown sources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
物语发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
2秒前
2秒前
3秒前
小二郎应助震动的曲奇采纳,获得10
4秒前
怕黑傥关注了科研通微信公众号
5秒前
AJoe发布了新的文献求助10
5秒前
Ray发布了新的文献求助10
6秒前
qiu发布了新的文献求助10
6秒前
7秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
粥喝不喝发布了新的文献求助10
14秒前
斯文败类应助陈一昂采纳,获得10
14秒前
17秒前
研友_VZG7GZ应助qi采纳,获得10
20秒前
FashionBoy应助CheeseD采纳,获得10
20秒前
20秒前
白桦林泪发布了新的文献求助10
20秒前
21秒前
22秒前
22秒前
23秒前
xiaomaxia发布了新的文献求助10
25秒前
25秒前
席从云完成签到,获得积分20
26秒前
Yu完成签到,获得积分10
27秒前
27秒前
28秒前
席从云发布了新的文献求助10
28秒前
狄淇儿完成签到,获得积分10
29秒前
竹筏过海应助科研通管家采纳,获得30
31秒前
顾矜应助科研通管家采纳,获得10
31秒前
31秒前
31秒前
FashionBoy应助科研通管家采纳,获得10
31秒前
陈一昂发布了新的文献求助10
32秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
An account of the genus Dioscorea in the East, Part 2. The species which twine to the right 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4268764
求助须知:如何正确求助?哪些是违规求助? 3799669
关于积分的说明 11909699
捐赠科研通 3446757
什么是DOI,文献DOI怎么找? 1890765
邀请新用户注册赠送积分活动 941492
科研通“疑难数据库(出版商)”最低求助积分说明 845687