癌症研究
癌症干细胞
上皮-间质转换
Wnt信号通路
转移
CD44细胞
SOX2
波形蛋白
乳腺癌
癌变
癌症
生物
干细胞
医学
免疫学
信号转导
内科学
胚胎干细胞
免疫组织化学
细胞
细胞生物学
生物化学
基因
遗传学
作者
Yani Cui,Mingda Zhao,Yuedi Yang,Ruiling Xu,Lei Tong,Jie Liang,Xingdong Zhang,Yong Sun,Yujiang Fan
标识
DOI:10.1016/j.actbio.2022.08.024
摘要
The abnormal activation of the Wnt/β-catenin signaling pathway and epithelial-mesenchymal transition (EMT) in drug-resistant tumor cells and cancer stem cells (CSCs) stimulate tumor metastasis and recurrence. Here, a promising combined chemotherapeutic strategy of salinomycin (SL) and doxorubicin (DOX) with specific inhibition of tumor stemness by a targeted co-delivery nanosystem was developed to overcome this abnormal progression. This strategy could be benefit drugs to effectively penetrate and infiltrate into spheres of 3D-cultured breast cancer stem cells (BCSCs). The expression of the Wnt/β-catenin signaling pathway-related genes (β-catenin, LRP6, LEF1, and TCF12) and target genes (Cyclin D1, Cmyc, and Fibronectin) as well as CSC stemness-related genes (Oct4, Nanog, and Hes1) was downregulated by redox-sensitive co-delivery micelles decorated with oligohyaluronic acid as the active targeting moiety. The changes in EMT-associated gene expression (E-cadherin and Vimentin) in vitro showed that the EMT process was also effectively inverted. This strategy achieved a strong inhibitory effect on solid tumor growth and an effective reduction in the risk of tumor metastasis in 4T1 tumor-bearing mice in vivo and effectively alleviated splenomegaly caused by the malignant tumor. Immunohistochemical staining analysis of E-cadherin, Vimentin, and β-catenin confirmed that the inversion of the EMT was also achieved in solid tumors. These results highlight the potential of SL and DOX combined chemotherapeutic strategy for eliminating breast carcinoma. Cancer stem cells (CSCs), as an important part of tumor heterogeneity, can survive against conventional chemotherapy and initiate tumorigenesis, recurrence, and metastasis. Moreover, non-CSCs can convert into the CSC state through the abnormal Wnt/β-catenin pathway, which is closely related to the epithelial-mesenchymal transition (EMT) process. Here, redox-degradable binary drug-loaded micelles (PPH/DOX+SL) were designed to target CSCs and overcome drug resistance of breast cancer cells. The combined chemotherapy of salinomycin (SL) and doxorubicin (DOX) reversed drug resistance, while the PPH/DOX+SL micelles enhanced the intracellular accumulation and drug penetration of BCSC spheres. The introduction of SL downregulated the expression of tumor stemness genes and the Wnt/β-catenin pathway-related genes and inverted the EMT process. PPH/DOX+SL continuously inhibited tumor growth and invasion in vivo.
科研通智能强力驱动
Strongly Powered by AbleSci AI