The aim of this paper is to investigate the effect of TiC addition on the microstructure, microhardness, and wear resistance of the medium-entropy alloy Co37Cr28Ni31Al2Ti2, which is suitable for applications in aerospace, automotive, and energy industries due to its high strength and wear resistance. The samples containing 0, 10, 20, and 40 wt.% of TiC were synthesized. The alloy’s microstructure changes significantly with the addition of TiC particles: they are uniformly dispersed in the FCC matrix, effectively increasing the Vickers hardness from 439 HV for the base alloy to 615 HV for the 40% TiC alloy. The four alloys were subjected to reciprocating dry sliding friction tests at loads of 2 N, 5 N, and 10 N. The wear volumes of the base alloy at these loads were 2.7 × 107, 4.6 × 107, and 1.1 × 108 μm3, respectively. The experimental results indicate that adding TiC greatly improves the wear resistance of the alloy by increasing the hardness and forming an oxide protective film. This study highlights the potential for developing alloys with excellent tribological properties for demanding application scenarios.