CLHGNNMDA: Hypergraph Neural Network Model Enhanced by Contrastive Learning for miRNA–Disease Association Prediction

超图 人工神经网络 联想(心理学) 计算机科学 人工智能 疾病 小RNA 机器学习 计算生物学 生物 数学 心理学 医学 遗传学 内科学 基因 离散数学 心理治疗师
作者
Rong Zhu,Yong Wang,Ling-Yun Dai
出处
期刊:Journal of Computational Biology [Mary Ann Liebert, Inc.]
标识
DOI:10.1089/cmb.2024.0720
摘要

Numerous biological experiments have demonstrated that microRNA (miRNA) is involved in gene regulation within cells, and mutations and abnormal expression of miRNA can cause a myriad of intricate diseases. Forecasting the association between miRNA and diseases can enhance disease prevention and treatment and accelerate drug research, which holds considerable importance for the development of clinical medicine and drug research. This investigation introduces a contrastive learning-augmented hypergraph neural network model, termed CLHGNNMDA, aimed at predicting associations between miRNAs and diseases. Initially, CLHGNNMDA constructs multiple hypergraphs by leveraging diverse similarity metrics related to miRNAs and diseases. Subsequently, hypergraph convolution is applied to each hypergraph to extract feature representations for nodes and hyperedges. Following this, autoencoders are employed to reconstruct information regarding the feature representations of nodes and hyperedges and to integrate various features of miRNAs and diseases extracted from each hypergraph. Finally, a joint contrastive loss function is utilized to refine the model and optimize its parameters. The CLHGNNMDA framework employs multi-hypergraph contrastive learning for the construction of a contrastive loss function. This approach takes into account inter-view interactions and upholds the principle of consistency, thereby augmenting the model's representational efficacy. The results obtained from fivefold cross-validation substantiate that the CLHGNNMDA algorithm achieves a mean area under the receiver operating characteristic curve of 0.9635 and a mean area under the precision-recall curve of 0.9656. These metrics are notably superior to those attained by contemporary state-of-the-art methodologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助烤肉酱酱酱采纳,获得10
4秒前
7秒前
zho发布了新的文献求助10
14秒前
潇洒的平松完成签到,获得积分10
15秒前
16秒前
bkagyin应助外向宛菡采纳,获得10
18秒前
哭泣以筠完成签到 ,获得积分10
18秒前
21秒前
22秒前
22秒前
欣喜水桃完成签到,获得积分10
23秒前
RichieXU完成签到,获得积分10
24秒前
满意一曲发布了新的文献求助10
24秒前
dennisysz发布了新的文献求助10
25秒前
25秒前
ding应助CH采纳,获得10
27秒前
28秒前
不倦给殷勤的紫槐的求助进行了留言
29秒前
优美君浩发布了新的文献求助10
30秒前
JL发布了新的文献求助10
31秒前
隐形的谷槐完成签到 ,获得积分10
32秒前
namaka完成签到,获得积分10
32秒前
xiaoxia发布了新的文献求助10
34秒前
一叶扁舟完成签到,获得积分10
34秒前
39秒前
CH发布了新的文献求助10
42秒前
小马甲应助啦啦啦采纳,获得10
47秒前
49秒前
52秒前
52秒前
xiaoxia完成签到,获得积分10
53秒前
mmyhn发布了新的文献求助200
53秒前
57秒前
ljj发布了新的文献求助10
57秒前
洪东智发布了新的文献求助10
59秒前
dennisysz发布了新的文献求助10
1分钟前
洪东智完成签到,获得积分10
1分钟前
丘比特应助CH采纳,获得10
1分钟前
爆米花应助pattzz采纳,获得10
1分钟前
哈哈哈哈嘻嘻嘻完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777369
求助须知:如何正确求助?哪些是违规求助? 3322759
关于积分的说明 10211549
捐赠科研通 3038120
什么是DOI,文献DOI怎么找? 1667117
邀请新用户注册赠送积分活动 797971
科研通“疑难数据库(出版商)”最低求助积分说明 758103