超图
人工神经网络
联想(心理学)
计算机科学
人工智能
疾病
小RNA
机器学习
计算生物学
生物
数学
心理学
医学
遗传学
内科学
基因
离散数学
心理治疗师
作者
Rong Zhu,Yong Wang,Ling-Yun Dai
标识
DOI:10.1089/cmb.2024.0720
摘要
Numerous biological experiments have demonstrated that microRNA (miRNA) is involved in gene regulation within cells, and mutations and abnormal expression of miRNA can cause a myriad of intricate diseases. Forecasting the association between miRNA and diseases can enhance disease prevention and treatment and accelerate drug research, which holds considerable importance for the development of clinical medicine and drug research. This investigation introduces a contrastive learning-augmented hypergraph neural network model, termed CLHGNNMDA, aimed at predicting associations between miRNAs and diseases. Initially, CLHGNNMDA constructs multiple hypergraphs by leveraging diverse similarity metrics related to miRNAs and diseases. Subsequently, hypergraph convolution is applied to each hypergraph to extract feature representations for nodes and hyperedges. Following this, autoencoders are employed to reconstruct information regarding the feature representations of nodes and hyperedges and to integrate various features of miRNAs and diseases extracted from each hypergraph. Finally, a joint contrastive loss function is utilized to refine the model and optimize its parameters. The CLHGNNMDA framework employs multi-hypergraph contrastive learning for the construction of a contrastive loss function. This approach takes into account inter-view interactions and upholds the principle of consistency, thereby augmenting the model's representational efficacy. The results obtained from fivefold cross-validation substantiate that the CLHGNNMDA algorithm achieves a mean area under the receiver operating characteristic curve of 0.9635 and a mean area under the precision-recall curve of 0.9656. These metrics are notably superior to those attained by contemporary state-of-the-art methodologies.
科研通智能强力驱动
Strongly Powered by AbleSci AI