已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi‐Omics Analyses Offer Novel Insights into the Selection of Sugar and Lipid Metabolism During Maize Domestication and Improvement

生物 驯化 脂质代谢 转录组 选择(遗传算法) 碳水化合物代谢 生物技术 代谢途径 新陈代谢 分子育种 基因 遗传学 生物化学 基因表达 计算机科学 人工智能
作者
Di Wu,Le Guan,Yingxue Wu,Yang Wang,Ruiqi Gao,Jianbin Zhong,Qiunan Zhang,Shifeng Wang,Xudong Zhang,Guochao Zhang,Jun Huang,Yanqiang Gao
出处
期刊:Plant Cell and Environment [Wiley]
标识
DOI:10.1111/pce.15305
摘要

Over thousands of years of domestication, maize has undergone significant environmental changes. Understanding the genetic and metabolic trace during maize evolution can better contribute to molecular breeding and nutrition quality improvement. This study examines the metabolic profiles and transcriptomes of maize kernels from teosinte, landrace, and maize accessions at 15 days post-pollination. Differentially accumulated metabolites were enriched in sugar and lipid metabolism pathways. The metabolic selection profile exhibited four distinct patterns: continuous increases, constant decrease, initial decline or stability followed by an increase, and initial growth or stability followed by a subsequent decline. Sugars and JA were positive selection while LPCs/LPEs were negative selection during evolution. The expression level of genes related to sugar accumulation was significantly higher in maize, contrasting with enhanced glycolysis and lipid metabolism activity in teosinte. The correlation network highlighted distinct hormonal regulation of sugar and lipid metabolism. We identified 27 candidate genes associated with sugar, lipid, and JA that have undergone strong selection by population genomic regions. The positive selection of the PLD may explain the negative selection of LPCs/LPEs due to substrate competition. These findings enhance our understanding of the evolutionary trajectory of primary metabolism in maize and provide valuable resources for breeding and improvement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Wang完成签到,获得积分10
1秒前
科研通AI5应助舒适安阳采纳,获得10
1秒前
曲微暖完成签到,获得积分10
2秒前
橘子完成签到,获得积分10
3秒前
我是老大应助vimeid采纳,获得10
4秒前
5秒前
brisk完成签到,获得积分10
7秒前
CodeCraft应助qiu采纳,获得10
7秒前
8秒前
迷路的阳阳完成签到 ,获得积分10
8秒前
FashionBoy应助修狗采纳,获得10
9秒前
黑糖珍珠完成签到 ,获得积分10
9秒前
yiyizhou发布了新的文献求助10
11秒前
12秒前
12秒前
舒适安阳发布了新的文献求助10
14秒前
bc应助有魅力的井采纳,获得30
15秒前
16秒前
Li发布了新的文献求助10
16秒前
17秒前
17秒前
SPUwangshunfeng完成签到,获得积分10
18秒前
医者修心完成签到,获得积分10
19秒前
19秒前
CipherSage应助顶级科学家采纳,获得10
19秒前
大个应助帅气的宛凝采纳,获得10
22秒前
buta发布了新的文献求助10
24秒前
Robin发布了新的文献求助10
24秒前
24秒前
心灵美大侠完成签到,获得积分10
24秒前
医者修心发布了新的文献求助10
26秒前
28秒前
拼搏的松鼠完成签到,获得积分10
28秒前
昔年发布了新的文献求助10
30秒前
32秒前
35秒前
mika910完成签到 ,获得积分10
40秒前
44秒前
45秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830243
求助须知:如何正确求助?哪些是违规求助? 3372717
关于积分的说明 10474451
捐赠科研通 3092387
什么是DOI,文献DOI怎么找? 1702069
邀请新用户注册赠送积分活动 818759
科研通“疑难数据库(出版商)”最低求助积分说明 771066