Domain Progressive Low-dose CT Imaging using Iterative Partial Diffusion Model

迭代重建 迭代法 医学影像学 扩散 计算机科学 核医学 算法 计算机视觉 人工智能 医学 物理 热力学
作者
Feiyang Liao,Yufei Tang,Qiang Du,Jiping Wang,Ming Li,Jian Zheng
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3492260
摘要

Traditional deep learning reconstruction (DLR) methods have been sparsely applied in practical low-dose computed tomography (LDCT) imaging, as they heavily rely on the similarity between the latent distributions of data features. However, in real LDCT imaging scenarios, the distribution of data features is highly diverse and complex, which limits the generalizability of existing DLR methods. Recently, diffusion models have shown great potential in the field of LDCT imaging, and some early studies have used them to address the domain generalization problem. However, they still face challenges such as high time consumption, difficulties in training with high resolution, and performance degradation in denoising scenario. In this paper, we propose a novel domain progressive LDCT imaging framework with an iterative partial diffusion model (IPDM) as the core. Firstly, the derived IPDM theoretical framework supports completing the denoising task by iterating a small part of the complete diffusion model, utilizing the strong generation ability of the diffusion model while alleviating time consumption and convergence difficulties. Secondly, a derived condition guided sampling method alleviates sampling bias caused by deviations of the predictive data gradient and Langevin dynamics. Finally, an adaptive weight strategy based on pixel-wise noise estimation can gradually adjust guided intensity. Extensive testing on diverse datasets reveals that our method outperforms traditional iterative reconstructions, unsupervised, and some supervised DLR methods in visual and quantitative evaluations, closely matching the performance of state-of-the-art supervised DLR techniques. Additionally, our IPDM was trained using practical normal-dose CT data, rather than the tested LDCT data. This enables our method to have better generalization ability compared to traditional DLR methods in practical imaging scenarios. Source code is available at https://github.com/LFY1998/IPDM-PyTorch.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZR14124完成签到,获得积分10
1秒前
Fairy完成签到 ,获得积分10
1秒前
3秒前
3秒前
iNk应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
Serendipity应助科研通管家采纳,获得20
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
7秒前
云轩完成签到,获得积分10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
7秒前
kannakaco完成签到,获得积分10
7秒前
在水一方应助老肥采纳,获得10
8秒前
科研通AI2S应助生动严青采纳,获得10
10秒前
清脆糖豆完成签到,获得积分10
10秒前
小二郎应助猴哥采纳,获得10
11秒前
月儿完成签到 ,获得积分10
15秒前
春风知我意完成签到,获得积分10
15秒前
xzy998应助忘语采纳,获得10
15秒前
方式产生的完成签到,获得积分20
16秒前
机灵柚子应助keyan采纳,获得10
17秒前
18秒前
Hello应助stars采纳,获得10
18秒前
freshman3005发布了新的文献求助30
21秒前
一切都会好起来的完成签到,获得积分10
24秒前
24秒前
嘻哈完成签到,获得积分10
25秒前
25秒前
陈隆完成签到,获得积分10
25秒前
qq完成签到,获得积分10
25秒前
fafafa完成签到,获得积分10
26秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
探索化学的奥秘:电子结构方法 400
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 400
Elliptical Fiber Waveguides 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4173915
求助须知:如何正确求助?哪些是违规求助? 3709297
关于积分的说明 11699084
捐赠科研通 3393181
什么是DOI,文献DOI怎么找? 1861752
邀请新用户注册赠送积分活动 920736
科研通“疑难数据库(出版商)”最低求助积分说明 832843