Identification of candidate biomarkers for gastric cancer by bioinformatics analysis of pooled microarray gene expression datasets in Gene Expression Omnibus.

基因 医学 癌症 鉴定(生物学) 基因表达 微阵列分析技术 微阵列 基因表达谱 计算生物学 生物信息学 遗传学 生物 内科学 植物
作者
Fen Wang,Fen Wang
出处
期刊:Journal of Clinical Oncology [Lippincott Williams & Wilkins]
卷期号:43 (4_suppl): 467-467
标识
DOI:10.1200/jco.2025.43.4_suppl.467
摘要

467 Background: Gastric cancer (GC) remains one of the most prevalent malignant diseases worldwide. The high mortality rate is largely due to the limited treatment options and the challenges in diagnosing the cancer at an early stage. Understanding the genetic differences driving the proliferation of GC is crucial for advancing diagnostic methods and developing targeted treatments. This study aims to identify biomarkers involved in the pathogenesis of GC through integrated bioinformatics analysis. Methods: Extracted from the Geo Expression Omnibus, three DataSets (GSE118916, GSE79973, and GSE13861) were analyzed for differentially expressed genes (DEGs) using the R statistical language. The three data sets were then compared for common DEGs, which would serve as the focus of this study. These DEGs were functionally analyzed for pathways by Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). A protein–protein interaction (PPI) network was constructed to screen out candidate genes. Results: The results revealed that 123 DEGs of the three datasets containing 26 upregulated genes and 97 downregulated genes were ascertained in our study. The GO and KEGG enrichment analysis results showed that the functions of DEGs were mainly involved in the retinol metabolic process, xenobiotic metabolic process, collagen type I trimer, potassium: proton exchanging ATPase complex, benzaldehyde dehydrogenase (NAD+) activity, alcohol dehydrogenase (NADP+) activity, Collecting duct acid secretion, and Tyrosine metabolism. Through the PPI analysis network, the core genes with the highest degree of 7 nodes were selected: COL1A1, COL1A2, COL11A1, THBS2, ATP4A, COL10A1, and CXCL8. Conclusions: The 7 genes identified in this study may play a vital regulatory role in the occurrence and development of GC and may also be potential therapeutic targets. Further mechanistic studies of the pathogenesis and treatment of GC may be able to identify new targets using these shared pathways. These findings could contribute to a better understanding of the origins of gastric cancer and facilitate the development of early interventions. The bioinformatics analysis conducted in this study offers new insights and directions for further research on gastric cancer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
farh完成签到 ,获得积分10
1秒前
快飞飞完成签到 ,获得积分10
1秒前
sx完成签到,获得积分10
1秒前
1秒前
guo发布了新的文献求助10
1秒前
烟花应助gbr0519采纳,获得10
1秒前
qsdxasc发布了新的文献求助10
1秒前
肥弹弹发布了新的文献求助10
2秒前
药勺儿发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
333完成签到 ,获得积分10
3秒前
3秒前
坚定汝燕完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
酷炫甜瓜发布了新的文献求助10
3秒前
精明的橘子完成签到,获得积分10
4秒前
柠VV完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
真实的沛山完成签到 ,获得积分10
6秒前
6秒前
二九十二发布了新的文献求助10
6秒前
Gin发布了新的文献求助10
7秒前
华生完成签到,获得积分10
7秒前
科研通AI5应助Ning00000采纳,获得10
7秒前
7秒前
8秒前
8秒前
NexusExplorer应助farh采纳,获得10
8秒前
泽丶完成签到,获得积分10
8秒前
2025121539完成签到,获得积分10
8秒前
9秒前
ding应助沉默的孤兰采纳,获得10
9秒前
铲铲发布了新的文献求助30
9秒前
10秒前
10秒前
长情晓兰发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
解放军总医院眼科医学部病例精解 1000
温州医科大学附属眼视光医院斜弱视与双眼视病例精解 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4895783
求助须知:如何正确求助?哪些是违规求助? 4177670
关于积分的说明 12968687
捐赠科研通 3940755
什么是DOI,文献DOI怎么找? 2162021
邀请新用户注册赠送积分活动 1180420
关于科研通互助平台的介绍 1085958