Assessing EFL learners’ attitudes on Generative Artificial Intelligence: Development and validation of Generative Artificial Intelligence attitude scale for EFL learners (GenAIAS)

生成语法 比例(比率) 心理学 数学教育 计算机科学 人工智能 量子力学 物理
作者
Ali Orhan,Tuğba Aydın Yıldız,Şule Çınar Yağcı
出处
期刊:Journal of research on technology in education [Taylor & Francis]
卷期号:: 1-21 被引量:4
标识
DOI:10.1080/15391523.2024.2437744
摘要

Generative Artificial Intelligence (GenAI) has emerged as a transformative force in education, particularly in the context of English as a Foreign Language (EFL) instruction. This study aims to develop and validate the Generative Artificial Intelligence Attitude Scale (GenAIAS) to assess EFL learners' attitudes toward GenAI. The research involved two independent samples of university students in Türkiye, with data collected through scales and analyzed using exploratory and confirmatory factor analyses. The final scale, comprising 33 items, was categorized into four factors: Learning/Utility, Enjoyment, Usefulness, and Interest. The scale demonstrated good psychometric properties, including satisfactory convergent and discriminant validity, internal consistency, and measurement invariance across genders. The findings indicate no significant gender differences in attitudes toward GenAI, suggesting a general acceptance of GenAI technologies among EFL learners. Additionally, a positive correlation was observed between daily internet usage and attitudes toward GenAI. This study contributes to the growing body of knowledge on GenAI in language education and offers practical implications for integrating GenAI into language learning, highlighting the importance of fostering positive attitudes for successful technology adoption. Future research should further validate the scale with diverse populations to enhance its reliability and applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助lizhao采纳,获得20
1秒前
0905完成签到,获得积分10
3秒前
3秒前
3秒前
hhgcc应助嘟嘟采纳,获得10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
我是老大应助LL采纳,获得10
5秒前
Zx_1993应助asedrf采纳,获得10
5秒前
千千发布了新的文献求助10
6秒前
8秒前
研友_LNBW5L完成签到,获得积分10
8秒前
善良的火完成签到 ,获得积分10
8秒前
8秒前
8秒前
8秒前
Chenlin1008发布了新的文献求助10
9秒前
拼搏从凝发布了新的文献求助10
10秒前
nululala发布了新的文献求助30
10秒前
10秒前
CodeCraft应助orixfu采纳,获得10
11秒前
爆米花应助执着新蕾采纳,获得10
11秒前
12秒前
哇owao完成签到,获得积分10
12秒前
12秒前
酷炫翠桃应助张津硕采纳,获得10
12秒前
una完成签到 ,获得积分10
13秒前
沉静小蚂蚁完成签到,获得积分10
13秒前
瘦瘦彩虹完成签到,获得积分10
13秒前
李爱国应助陈ZQ采纳,获得10
13秒前
Ogai发布了新的文献求助10
13秒前
14秒前
15秒前
上官若男应助吴彦祖采纳,获得10
16秒前
16秒前
核桃仁发布了新的文献求助10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Optimization and Learning via Stochastic Gradient Search 300
Higher taxa of Basidiomycetes 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4673672
求助须知:如何正确求助?哪些是违规求助? 4052114
关于积分的说明 12530892
捐赠科研通 3745861
什么是DOI,文献DOI怎么找? 2068857
邀请新用户注册赠送积分活动 1097996
科研通“疑难数据库(出版商)”最低求助积分说明 978220