Pavement breakage detection from unmanned aerial vehicle viewpoint based on improved Detr

破损 计算机科学 遥感 航空学 环境科学 汽车工程 工程类 地质学 万维网
作者
Liping Liu
标识
DOI:10.1117/12.3051600
摘要

Road damage detection is a key step in maintaining road safety and extending road life, and traditional detection methods depend on manual in spection, which is both labor-intensive and lacks efficiency, with limited accuracy. With the development of UAV technology, UAV inspection has become an efficient and low-cost means of road inspection. In this study, we introduce a UAV-based road breakage detection method leveraging an enhanced Detr model. By adding feature pyramid network (FPN) after the CNN feature extraction module and adopting the ViT encoder structure, the model's capability to detect targets of various sizes and identify them in complex backgrounds is significantly improved. The experiments utilized the UAV-PDD2023 dataset, comprising 2,440 road pavement images captured through UAV inspections and annotated with six common types of road damage. The experimental results demonstrate that the enhanced Detr model can efficiently and accurately identify six types of road damage, including longitudinal cracks, transverse cracks, alligator cracks, diagonal cracks, repairs, and potholes. In particular, the detection performance is significantly improved for damage targets in small scales and complex backgrounds. In summary, the UAV road breakage detection method based on enhanced Detr introduced in this study provides effective technical support for UAV road inspection and has important practical application value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
霸气巧蕊完成签到,获得积分10
刚刚
二甲双胍发布了新的文献求助10
刚刚
斯文败类应助有魅力夜安采纳,获得10
刚刚
1秒前
linliqing发布了新的文献求助20
1秒前
嗒嗒小医生完成签到,获得积分10
2秒前
拼搏问安完成签到,获得积分10
3秒前
4秒前
4秒前
科研通AI5应助kai采纳,获得10
4秒前
霸气巧蕊发布了新的文献求助10
5秒前
领导范儿应助ANDRT采纳,获得10
5秒前
雨前知了完成签到,获得积分10
5秒前
可可乐发布了新的文献求助30
6秒前
6秒前
6秒前
冰魂应助邢雅茹采纳,获得10
7秒前
7秒前
科研通AI5应助嗒嗒小医生采纳,获得10
7秒前
相濡以沫发布了新的文献求助10
8秒前
hqz完成签到,获得积分10
9秒前
CodeCraft应助按时下班采纳,获得10
9秒前
9秒前
Junrong应助吴蹇采纳,获得10
10秒前
喵星人发布了新的文献求助10
10秒前
科研通AI5应助鱼不鱼采纳,获得10
11秒前
hqz发布了新的文献求助10
11秒前
谨慎晓灵发布了新的文献求助10
11秒前
CipherSage应助诗轩采纳,获得10
11秒前
11秒前
科研白白完成签到,获得积分10
12秒前
llc完成签到 ,获得积分10
12秒前
12秒前
13秒前
理li完成签到,获得积分10
13秒前
聆风发布了新的文献求助10
13秒前
14秒前
14秒前
在水一方应助芋芋采纳,获得10
15秒前
浅碎时光发布了新的文献求助10
16秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807374
求助须知:如何正确求助?哪些是违规求助? 3352125
关于积分的说明 10357380
捐赠科研通 3068170
什么是DOI,文献DOI怎么找? 1684876
邀请新用户注册赠送积分活动 809979
科研通“疑难数据库(出版商)”最低求助积分说明 765840