A general way to manipulate electrical conductivity of graphene

石墨烯 电导率 密度泛函理论 石墨烯纳米带 电阻率和电导率 电子迁移率 导电体 材料科学 工作职能 X射线吸收精细结构 氧化石墨烯纸 石墨烯泡沫 纳米技术 化学物理 光电子学 复合材料 化学 光谱学 计算化学 物理化学 物理 图层(电子) 量子力学
作者
Liqing Chen,Nian Li,Xinling Yu,Shudong Zhang,Cui Liu,Yanping Song,Zhao Li,Shuai Han,Wenbo Wang,Pengzhan Yang,Na Hong,Sarmad Ali,Zhenyang Wang
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:462: 142139-142139 被引量:57
标识
DOI:10.1016/j.cej.2023.142139
摘要

Electrical conductivity of graphene is one of the most important factors to dominate its applications, which is much lower than conventional good conductors including cooper in spite of its excellent electron mobility, limited by its low carrier density. In this work, a general way to improve electrical conductivity of graphene is proposed via introducing Cu NPs, which are rich in free electrons, into the well-crystalized laser-induced graphene (LIG). The LIG/Cu composite films, with an average diameter of 10 nm of Cu NPs evenly dispersed, were prepared in a laser induction process. It is worth mentioning that the electrical conductivity of porous graphene composited with Cu NPs is increased up to 0.37 × 107 S m−1, which is 3000 times that of pure LIG. To make clear mechanism of this notable phenomenon, the fine structure of Cu-graphene interface is characterized by X-ray Absorption Fine Structure (XAFS) spectroscopy, based on which, Density Function Theory (DFT) calculations are further adopted to reveal the influence of interface structure on electrical conductivity. It is revealed that Cu NPs with surface oxidation state (Cu2+) are most conducive to forming stable bonds with graphene, which will facilitate the electrons transfer from Cu to graphene. As a result, high carrier density and mobility are simultaneously realized in the graphene film, which finally leads to significant electrical conductivity enhancement. The results are of great significance in manipulating electrical conductivity of graphene with respect to various applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Stone发布了新的文献求助10
1秒前
1秒前
领导范儿应助霸气的金鱼采纳,获得10
2秒前
3秒前
tqqwerty发布了新的文献求助10
3秒前
赘婿应助听枫采纳,获得10
3秒前
3秒前
W1发布了新的文献求助10
4秒前
小二郎应助年少采纳,获得10
4秒前
gazel完成签到,获得积分10
5秒前
小吴同学发布了新的文献求助10
5秒前
阿飞完成签到,获得积分10
6秒前
7秒前
li发布了新的文献求助10
8秒前
8秒前
春风十里完成签到,获得积分10
9秒前
owenenen完成签到,获得积分10
9秒前
9秒前
SciGPT应助momo采纳,获得10
9秒前
烟花应助Lee采纳,获得10
10秒前
LALALA卫卫J完成签到,获得积分10
10秒前
11秒前
希望天下0贩的0应助KAOKAO采纳,获得10
12秒前
12秒前
我是老大应助yandq采纳,获得10
12秒前
13秒前
xue发布了新的文献求助10
14秒前
14秒前
听枫发布了新的文献求助10
14秒前
阿克图尔斯·蒙斯克完成签到,获得积分10
15秒前
超级幼旋应助科研通管家采纳,获得150
15秒前
完美思菱发布了新的文献求助10
15秒前
Hilda007应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
Ava应助科研通管家采纳,获得10
15秒前
七月落雪发布了新的文献求助20
16秒前
夜莺应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
夜莺应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073082
求助须知:如何正确求助?哪些是违规求助? 4293232
关于积分的说明 13377905
捐赠科研通 4114645
什么是DOI,文献DOI怎么找? 2253057
邀请新用户注册赠送积分活动 1257880
关于科研通互助平台的介绍 1190739