Acceptability and deviation of finish line detection and restoration contour design in single-unit crown: Comparative evaluation between 2 AI-based CAD software programs and dental laboratory technicians

终点线 计算机辅助设计 牙冠(牙科) 软件 牙科技师 牙科 工程制图 口腔正畸科 单线 计算机科学 工程类 医学 地质学 古生物学 种族(生物学) 程序设计语言
作者
Kedith Sawangsri,Mariam Bekkali,Nathan Lutz,Safa Alrashed,Yuan‐Lynn Hsieh,Yi-Chen Lai,Catherine Arreaza,Leonardo M. Nassani,Hanin Hammoudeh
出处
期刊:Journal of Prosthetic Dentistry [Elsevier BV]
标识
DOI:10.1016/j.prosdent.2025.03.037
摘要

Accurate finish line detection and restoration contour design are critical for the clinical success of fixed dental prostheses. While fully automated artificial intelligence (AI)-based computer-aided design (CAD) software programs have demonstrated potential, their virtual design's acceptability and deviation compared with conventional methods remain unclear. The purpose of this in vitro study was to compare the acceptability and deviation of finish line detection and virtual restoration design between 2 fully automated AI-based CAD software programs and dental laboratory technicians. Digital scans of 100 natural abutments prepared for single crowns were replicated 3 times and assigned to dental laboratory technicians (DT), Dentbird (DB), and Automate (AM). Restoration designs were assessed qualitatively by 6 prosthodontists for acceptability and quantitatively using deviation metrics, including root mean square (RMS) error and the Hausdorff distance (HD). Statistical analyses included ANOVA and Student t tests to evaluate intergroup differences (α=.05). Both fully automated systems successfully completed most restorations, with success rates of 97% for DB and 99% for AM. The DT and AM groups demonstrated significantly higher acceptability scores for finish line detection and restoration design than the DB group (P<.001). Quantitative analysis revealed that AM restorations exhibited lower deviations in both RMS values (184 ±36 µm) and HD (132 ±57 µm) than DB, aligning with virtual design acceptability assessments. The Automate program exhibited an acceptability score comparable with that of dental laboratory technicians in finish line detection and restoration design, as well as significantly lower deviation than the Dentbird program.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张宏宇发布了新的文献求助10
2秒前
正直无极完成签到,获得积分10
5秒前
传奇3应助张宏宇采纳,获得10
8秒前
mrli完成签到,获得积分10
11秒前
SYLH应助科研通管家采纳,获得10
12秒前
Rita应助科研通管家采纳,获得10
12秒前
SYLH应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
SYLH应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得10
13秒前
Rita应助科研通管家采纳,获得10
13秒前
英姑应助科研通管家采纳,获得10
13秒前
yana应助科研通管家采纳,获得10
13秒前
yana应助科研通管家采纳,获得10
13秒前
科目三应助科研通管家采纳,获得10
13秒前
冰魂应助科研通管家采纳,获得20
13秒前
yu_z完成签到 ,获得积分10
15秒前
单身的逊完成签到,获得积分10
25秒前
26秒前
28秒前
mrli发布了新的文献求助30
30秒前
32秒前
单身的逊发布了新的文献求助10
32秒前
搜集达人应助fcgcgfcgf采纳,获得10
35秒前
打打应助lancer采纳,获得30
37秒前
38秒前
taozhiqi完成签到 ,获得积分10
42秒前
NexusExplorer应助mrli采纳,获得10
42秒前
44秒前
hyominhsu完成签到,获得积分10
46秒前
xiaowang应助西西采纳,获得10
47秒前
roger33发布了新的文献求助30
49秒前
孙一完成签到,获得积分10
51秒前
所所应助冰冰凉凉彬彬采纳,获得10
1分钟前
JamesPei应助Zack采纳,获得10
1分钟前
1分钟前
上官若男应助Galaxee采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
基于CZT探测器的128通道能量时间前端读出ASIC设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777104
求助须知:如何正确求助?哪些是违规求助? 3322457
关于积分的说明 10210413
捐赠科研通 3037822
什么是DOI,文献DOI怎么找? 1666890
邀请新用户注册赠送积分活动 797849
科研通“疑难数据库(出版商)”最低求助积分说明 758044