已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Improving detection of pollution fee declarations for environmental policy compliance through metaheuristic-optimized ensemble learning

顺从(心理学) 环境污染 元启发式 环境政策 污染 计算机科学 人工智能 环境规划 环境科学 心理学 环境保护 社会心理学 生态学 生物
作者
Jui‐Sheng Chou,Peng-Cheng Yeh,Chi‐Yun Liu,Ku‐Fan Chen
出处
期刊:Engineering, Construction and Architectural Management [Emerald Publishing Limited]
标识
DOI:10.1108/ecam-08-2024-1113
摘要

Purpose Given that the governments mandate industries to declare and pay fees for soil and groundwater contamination, relying on self-reporting creates risks of underreporting through fraudulent documentation. This study aims to address fraudulent pollution fee declarations by developing an advanced artificial intelligence (AI) detection model that enhances compliance with environmental policies. Design/methodology/approach This study integrates the Synthetic Minority Oversampling Technique (SMOTE) and a forensic-based investigation (FBI) metaheuristic algorithm with ensemble machine learning to detect fraudulent declarations effectively. The model is optimized for class imbalance, ensuring strong performance across key metrics, including accuracy, precision, specificity, F1 score and area under the curve (AUC). Findings The proposed model improves the detection of fraudulent pollution fee declarations and enhances the identification of tax evasion cases. Results indicate that combining data class imbalance techniques with model hyperparameter optimization significantly enhances the model’s ability to distinguish between fraudulent and legitimate reports. Practical implications This study enhances fraud detection in pollution fee declarations, ensuring that financial resources are allocated appropriately to remediation efforts. Reducing tax evasion and improving regulatory oversight support environmental sustainability, strengthen public health protections and promote fairer compliance practices, ultimately leading to more effective environmental policies and enforcement. Originality/value This research presents a novel approach to environmental compliance monitoring using SMOTE-based ensemble learning optimized by the FBI algorithm, offering a scalable and adaptable solution for global regulatory frameworks. This methodological advancement enhances data-driven decision-making, improves fraud detection accuracy and streamlines compliance inspections, significantly outperforming traditional monitoring techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
森诺完成签到 ,获得积分10
1秒前
XXGG发布了新的文献求助10
1秒前
2秒前
宋Jade发布了新的文献求助10
4秒前
4秒前
星辰大海应助啊毛采纳,获得10
6秒前
天天快乐应助醉熏的幼珊采纳,获得10
7秒前
9秒前
10秒前
刘刘发布了新的文献求助10
11秒前
CodeCraft应助宋Jade采纳,获得10
12秒前
PINO完成签到 ,获得积分10
14秒前
水墨橙子发布了新的文献求助10
14秒前
17秒前
18秒前
PINO关注了科研通微信公众号
20秒前
学习完成签到 ,获得积分10
20秒前
搜集达人应助周粥采纳,获得10
20秒前
21秒前
22秒前
在水一方应助水墨橙子采纳,获得10
22秒前
赘婿应助baby采纳,获得10
23秒前
XXGG完成签到,获得积分10
23秒前
SharonDu完成签到 ,获得积分10
25秒前
li完成签到,获得积分10
26秒前
28秒前
赘婿应助帅气的宛凝采纳,获得10
32秒前
水墨橙子完成签到,获得积分20
32秒前
xiaozhu发布了新的文献求助10
33秒前
33秒前
朴实的青雪完成签到,获得积分10
33秒前
34秒前
yaooo完成签到 ,获得积分10
35秒前
36秒前
38秒前
40秒前
twotonp发布了新的文献求助10
40秒前
41秒前
搜集达人应助mcl采纳,获得10
42秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
壮语核心名词的语言地图及解释 700
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3906568
求助须知:如何正确求助?哪些是违规求助? 3452276
关于积分的说明 10869237
捐赠科研通 3177847
什么是DOI,文献DOI怎么找? 1755635
邀请新用户注册赠送积分活动 848934
科研通“疑难数据库(出版商)”最低求助积分说明 791330