Correlated Beamforming Based on Deconvolution Methods for Identified Vehicle Exterior Wind Noise Sources and Interior Noise

反褶积 波束赋形 噪音(视频) 声学 计算机科学 噪声测量 物理 降噪 算法 电信 人工智能 图像(数学)
作者
Yinzhi He,H. Shen,Yu Wu,Lijun Zhang,Zhigang Yang,Reinhard Blumrich,Jochen Wiedemann
出处
期刊:SAE technical paper series 卷期号:1
标识
DOI:10.4271/2025-01-0025
摘要

<div class="section abstract"><div class="htmlview paragraph">Sound source identification based on beamforming is widely used today as a spatial sound field visualization technology in wind tunnel experiments for vehicle development. However, the conventional beamforming technique has its inherent limitation, such as bad spatial resolution at the low frequency range, and limited system dynamic range. To improve the performance, three deconvolution methods CLEAN, CLEAN-SC and DAMAS were investigated and applied to identify wind noise sources on a production car in this paper. After analysis of vehicle exterior wind noise sources distribution, correlation analysis between identified exterior noise sources and interior noise were conducted to study their energy contribution to vehicle interior. The results show that the algorithm CLEAN-SC based on spatial source coherence shows the best capability to remove the sidelobes for the uncorrelated wind noise sources, while CLEAN and DAMAS, which are based on point spread functions have definite limitations.</div><div class="htmlview paragraph">Considering the testing car, the main noise source of exterior is from the wheelhouse region, then follows the rearview mirror with much lower sound energy. However, noise from the mirror contributes most to the vehicle interior, while the contribution from wheelhouse region ranks the second place. In addition, windshield wipers and door handle can do perceptible contributions to vehicle interior noise at some characteristic frequency bands.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
武勇发布了新的文献求助50
4秒前
芯止谭轩完成签到,获得积分10
4秒前
atopos发布了新的文献求助10
4秒前
trap发布了新的文献求助10
5秒前
飞翔的小舟完成签到 ,获得积分10
5秒前
哈哈王子完成签到,获得积分10
6秒前
青栞完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
英姑应助墨墨采纳,获得30
11秒前
12秒前
盼盼完成签到,获得积分10
12秒前
trap完成签到,获得积分10
12秒前
爆米花应助糊涂的绿茶采纳,获得10
15秒前
隐形曼青应助dryan1110采纳,获得10
16秒前
17秒前
slow发布了新的文献求助10
19秒前
英俊的铭应助优秀的媚颜采纳,获得10
21秒前
顺其自然完成签到 ,获得积分10
22秒前
Rewi_Zhang完成签到,获得积分10
23秒前
roumaoliang完成签到,获得积分10
25秒前
文茵发布了新的文献求助10
30秒前
35秒前
37秒前
量子星尘发布了新的文献求助10
39秒前
39秒前
研友_VZG7GZ应助暮晓见采纳,获得30
40秒前
wfjj发布了新的文献求助10
41秒前
杨桃完成签到,获得积分10
42秒前
QQ发布了新的文献求助10
44秒前
优秀的媚颜给优秀的媚颜的求助进行了留言
45秒前
46秒前
shiqiang mu应助糊涂的绿茶采纳,获得10
46秒前
47秒前
沉默白桃完成签到,获得积分10
48秒前
共享精神应助游一采纳,获得10
51秒前
AIGT发布了新的文献求助10
51秒前
从别后忆相逢完成签到 ,获得积分10
52秒前
YAO完成签到 ,获得积分10
53秒前
公茂源完成签到 ,获得积分10
53秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3863300
求助须知:如何正确求助?哪些是违规求助? 3405686
关于积分的说明 10646084
捐赠科研通 3129330
什么是DOI,文献DOI怎么找? 1725868
邀请新用户注册赠送积分活动 831261
科研通“疑难数据库(出版商)”最低求助积分说明 779718