工作流程
计算机科学
环境修复
危害
过程(计算)
人类健康
跟踪(教育)
开源
污染
数据库
环境卫生
医学
心理学
生态学
教育学
政治学
法学
生物
操作系统
软件
程序设计语言
作者
A. Naga Babu,Greg W. Curtzwiler,Yun Ji,Evguenii Kozliak,Prakash Ranganathan
标识
DOI:10.1109/eit57321.2023.10187291
摘要
Per- and polyfluoroalkyl substances (PFAS) are known for their persistence, toxicity, and potential to cause harm to human health and the environment. Traditional monitoring methods are often expensive and time-consuming. The paper provides a review of existing machine learning (ML) models for PFAS detection and treatment processes. The paper also highlights a ML workflow process for PFAS detection, remediation technologies, and the need for unified open-source database for PFAS assessment in water.
科研通智能强力驱动
Strongly Powered by AbleSci AI